首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  国内免费   1篇
航空   17篇
航天技术   23篇
航天   17篇
  2018年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   1篇
  2005年   4篇
  2004年   1篇
  2003年   10篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1989年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
41.
As NASA struggles to fund and execute its ambitious Space Station Freedom and Mission to Planet Earth programmes, President Bush has pledge the nation to a programme to return humans to the Moon to stay and to explore Mars. While not predicted on scientific grounds, this Space Exploration Initiative welcomes the support and participation of the scientific community. Success in establishing this relationship will depend on how the initiative is structured, sold and managed within the context of scientists' past experience with large, manned flight programmes.  相似文献   
42.
An initial experiment in the Laboratory Biosphere facility, Santa Fe, New Mexico, was conducted May-August 2002 using a soil-based system with light levels (at 12 h per day) of 58-mol m-2 d-1. The crop tested was soybean, cultivar Hoyt, which produced an aboveground biomass of 2510 grams. Dynamics of a number of trace gases showed that methane, nitrous oxide, carbon monoxide, and hydrogen gas had initial increases that were substantially reduced in concentration by the end of the experiment. Methane was reduced from 209 ppm to 11 ppm, and nitrous oxide from 5 ppm to 1.4 ppm in the last 40 days of the closure experiment. Ethylene was at elevated levels compared to ambient during the flowering/fruiting phase of the crop. Soil respiration from the 5.37 m2 (1.46 m3) soil component was estimated at 23.4 ppm h-1 or 1.28 g CO2 h-1 or 5.7 g CO2 m-2 d-1. Phytorespiration peaked near the time of fruiting at about 160 ppm h-1. At the height of plant growth, photosynthesis CO2 draw down was as high as 3950 ppm d-1, and averaged 265 ppm h-1 (whole day averages) during lighted hours with a range of 156-390 ppm h-1. During this period, the chamber required injections of CO2 to continue plant growth. Oxygen levels rose along with the injections of carbon dioxide. Upon several occasions, CO2 was allowed to be drawn down to severely limiting levels, bottoming at around 150 ppm. A strong positive correlation (about 0.05 ppm h-1 ppm-1 with r2 about 0.9 for the range 1000-5000 ppm) was observed between atmospheric CO2 concentration and the rate of fixation up to concentrations of around 8800 ppm CO2.  相似文献   
43.
The widely discussed use of US reconnaissance satellites during the Gulf War will strongly motivate future regional adversaries to seek ways of countering US space-based assets. The presumption that reconnaissance satellites can operate covertly is obsolete. Tracking US reconnaissance satellites can provide valuable support to a hostile country's concealment and deception programs. Iraq's ability to conceal both major weapons programs and many SCUD launchers is a warning of the serious consequences such programs can have. Space surveillance systems of the type likely to be acquired by Third World countries are inconspicuous and may well go undetected, while direct ascent ASAT rockets are within the reach of many countries. This article argues that fundamental reexamination of the functions and architecture of US overhead reconnaissance is needed, and should be done outside the traditional Cold War bureaucratic structures.  相似文献   
44.
As part of the ground-based preparation for creating long-term life systems needed for space habitation and settlement, Space Biospheres Ventures (SBV) is undertaking the Biosphere 2 project near Oracle, Arizona. Biosphere 2, currently under construction, is scheduled to commence its operations in 1991 with a two-year closure period with a crew of eight people. Biosphere 2 is a facility which will be essentialy materially-closed to exchange with the outside environment. It is open to information and energy flow. Biosphere 2 is designed to achieve a complex life-support system by the integration of seven areas or "biomes"--rainforest, savannah, desert, marsh, ocean, intensive agriculture and human habitat. Unique bioregenerative technologies, such as soil bed reactors for air purification, aquatic waste processing systems, real-time analytic systems and complex computer monitoring and control systems are being developed for the Biosphere 2 project. Its operation should afford valuable insight into the functioning of complex life systems necessary for long-term habitation in space. It will serve as an experimental ground-based prototype and testbed for the stable, permanent life systems needed for human exploration of Mars.  相似文献   
45.
MIRO: Microwave Instrument for Rosetta Orbiter   总被引:1,自引:0,他引:1  
The European Space Agency Rosetta Spacecraft, launched on March 2, 2004 toward Comet 67P/Churyumov-Gerasimenko, carries a relatively small and lightweight millimeter-submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument will be used to study the evolution of outgassing water and other molecules from the target comet as a function of heliocentric distance. During flybys of the asteroids (2867) Steins and (21) Lutetia in 2008 and 2010 respectively, the instrument will measure thermal emission and search for water vapor in the vicinity of these asteroids. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients in Comet 67P/Churyumov-Gerasimenko and the asteroids (2867) Steins and (21) Lutetia. A 4096 channel CTS (Chirp Transform Spectrometer) spectrometer having 180 MHz total bandwidth and 44 kHz resolution is, in addition to the continuum channel, connected to the submillimeter receiver. The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species – CO, CH3OH, NH3 and three, oxygen-related isotopologues of water, H2 16O, H2 17O and H2 18O. The basic quantities measured with the MIRO instrument are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This paper provides a short discussion of the scientific objectives of the investigation, and a detailed discussion of the MIRO instrument system.  相似文献   
46.
The observed magnetic field configuration and signatures of reconnection in the large solar magnetic eruptions that make major flares and coronal mass ejections and in the much smaller magnetic eruptions that make X-ray jets are illustrated with cartoons and representative observed eruptions. The main reconnection signatures considered are the imaged bright emission from the heated plasma on reconnected field lines. In any of these eruptions, large or small, the magnetic field that drives the eruption and/or that drives the buildup to the eruption is initially a closed bipolar arcade. From the form and configuration of the magnetic field in and around the driving arcade and from the development of the reconnection signatures in coordination with the eruption, we infer that (1) at the onset of reconnection the reconnection current sheet is small compared to the driving arcade, and (2) the current sheet can grow to the size of the driving arcade only after reconnection starts and the unleashed erupting field dynamically forces the current sheet to grow much larger, building it up faster than the reconnection can tear it down. We conjecture that the fundamental reason the quasi-static pre-eruption field is prohibited from having a large current sheet is that the magnetic pressure is much greater than the plasma pressure in the chromosphere and low corona in eruptive solar magnetic fields.  相似文献   
47.
Abstract The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument. Key Words: Life-detection instruments-Planetary habitability and biosignatures-Radiation-Mars-Life in extreme environments. Astrobiology 12, 718-729.  相似文献   
48.
Keynote address.     
J P Allen 《Acta Astronautica》2001,49(3-10):523-527
  相似文献   
49.
Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号