首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6900篇
  免费   7篇
  国内免费   24篇
航空   3608篇
航天技术   2225篇
综合类   190篇
航天   908篇
  2021年   42篇
  2018年   93篇
  2017年   42篇
  2016年   44篇
  2014年   106篇
  2013年   150篇
  2012年   145篇
  2011年   218篇
  2010年   163篇
  2009年   264篇
  2008年   312篇
  2007年   169篇
  2006年   132篇
  2005年   145篇
  2004年   163篇
  2003年   211篇
  2002年   218篇
  2001年   257篇
  2000年   122篇
  1999年   180篇
  1998年   207篇
  1997年   149篇
  1996年   190篇
  1995年   248篇
  1994年   211篇
  1993年   139篇
  1992年   175篇
  1991年   85篇
  1990年   90篇
  1989年   187篇
  1988年   79篇
  1987年   79篇
  1986年   78篇
  1985年   213篇
  1984年   175篇
  1983年   140篇
  1982年   169篇
  1981年   211篇
  1980年   81篇
  1979年   75篇
  1978年   79篇
  1977年   49篇
  1976年   54篇
  1975年   78篇
  1974年   55篇
  1973年   39篇
  1972年   68篇
  1971年   57篇
  1970年   40篇
  1969年   48篇
排序方式: 共有6931条查询结果,搜索用时 46 毫秒
141.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
142.
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere.  相似文献   
143.
We show, using the HST — GHRS data on velocity and temperature in the nearby interstellar medium, that the observed 3 – 4 km s–1 relative velocity between the Local Interstellar Cloud (LIC) and the so-called G-cloud located in the Galactic Center hemisphere can be quite naturally explained assuming that the two clouds do interact with each other. In the proposed interpretation the two media are separated by a (quasiperpendicular) MHD shock front propagating from the LIC into the G-cloud. The LIC plasma is then nothing else but the shocked (compression 1.3 – 1.4) gas of the G-cloud. A 1-D single-fluid solution of the Rankine — Hugoniot equations can fit the most probable observed values of the relative velocity (3.75 km/s), LIC (6700 K) and G-cloud (5400 K) kinetic temperatures, if the plasma-beta of the LIC plasma is in the range 1.3 – 1.5 (Table 1). This corresponds to a super — fast magnetosonic motion of the heliosphere through the LIC, independently of LIC density. The LIC magnetic field strength is 1.9 (3.1) G for the LIC electron density ne = 0.04 (0.10) cm–3. In this case the shock is less than 30 000 AU away and moves at about 10 km s–1 relative to the LIC plasma. The Sun is chasing the shock and should catch up with it in about 104 years. If the heliospheric VLP emissions cutoff at 1.8 kHz is indicative of ne (LIC) = 0.04 cm–3 (Gurnett et al., 1993), the (pure plasma) bowshock ahead of the heliopause could be the source of quasi-continuous heliospheric 2-kHz emission band. We believe that with the expected increase in the performance of modern spectroscopic instrumentation the proposed method of magnetic field evaluation may in the future find wider application in the studies of the interstellar medium.  相似文献   
144.
The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.  相似文献   
145.
Protons of a specific energy, 55 MeV, have been found to induce primary high grade astrocytomas (HGA) in the Rhesus monkey (Macaca mulatta). Brain tumors of this type were not induced by protons of other energies (32-2,300 MeV). Induction of HGA has been identified in human patients who have had radiation therapy to the head. We believe that the induction of HGA in the monkey is a consequence of dose distribution, not some unique "toxic" property of protons. Comparison of the human experience with the monkey data indicates the RBE for induction of brain tumors to be about one. It is unlikely that protons cause an unusual change in oncogenic expression, as compared to conventional electromagnetic radiation.  相似文献   
146.
Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using EMG to monitor "postural" muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.  相似文献   
147.
During the 8 day IML-1 mission, regeneration of cell walls and cell divisions in rapeseed protoplasts were studied using the Biorack microscope onboard the Space Shuttle "Discovery". Samples from microgravity and 1g protoplast cultures were loaded on microscope slides. Visual microscopic observations were reported by the payload specialist Roberta Bondar, by down-link video transmission and by use of a microscope camera. Protoplasts grown under microgravity conditions do regenerate cell walls but to a lesser extent than under 1g. Cell divisions are delayed under microgravity. Few cell aggregates with maximum 4-6 cells per aggregate are formed under microgravity conditions, indicating that microgravity may have a profound influence on plant cell differentiation.  相似文献   
148.
We are in the process of surveying the linear polarization in luminous, early-type stars. We here report on new observations of the B [e] stars S 18 and R 50, and of the Luminous Blue Variables HR Car, R 143, and HD 160529. Together with previously published data, these observations provide clear evidence for the presence of intrinsic polarization in 1 B[e] star (HD 34664) and in 5 LBVs ( Car, P Cyg, R 127, AG Car, and HR Car). The data indicate that anisotropic stellar winds are a common occurrence among massive stars in these particular evolutionary stages. For such stars, mass-loss rates estimated using the assumption of a spherical, homogeneous and stationary outflow may be in error.  相似文献   
149.
150.
Wilson JR 《Aerospace America》1997,35(6):28-32, 38
The development and testing of a new emergency Crew Return Vehicle (CRV) prototype is discussed. The new CRV is being developed by NASA and ESA and is designed for use on the International Space Station as a supplement to the Soyuz ships of the Russians, which accommodate only three passengers. The new vehicle will provide a shirt-sleeve environment for up to six astronauts and will allow for emergency medical treatment to be provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号