全文获取类型
收费全文 | 7061篇 |
免费 | 34篇 |
国内免费 | 16篇 |
专业分类
航空 | 3191篇 |
航天技术 | 2446篇 |
综合类 | 22篇 |
航天 | 1452篇 |
出版年
2021年 | 76篇 |
2019年 | 47篇 |
2018年 | 166篇 |
2017年 | 107篇 |
2016年 | 113篇 |
2015年 | 52篇 |
2014年 | 180篇 |
2013年 | 232篇 |
2012年 | 223篇 |
2011年 | 342篇 |
2010年 | 235篇 |
2009年 | 342篇 |
2008年 | 379篇 |
2007年 | 233篇 |
2006年 | 163篇 |
2005年 | 197篇 |
2004年 | 186篇 |
2003年 | 220篇 |
2002年 | 148篇 |
2001年 | 222篇 |
2000年 | 133篇 |
1999年 | 166篇 |
1998年 | 194篇 |
1997年 | 111篇 |
1996年 | 173篇 |
1995年 | 203篇 |
1994年 | 189篇 |
1993年 | 121篇 |
1992年 | 150篇 |
1991年 | 48篇 |
1990年 | 50篇 |
1989年 | 142篇 |
1988年 | 60篇 |
1987年 | 60篇 |
1986年 | 65篇 |
1985年 | 188篇 |
1984年 | 151篇 |
1983年 | 108篇 |
1982年 | 117篇 |
1981年 | 215篇 |
1980年 | 51篇 |
1979年 | 46篇 |
1978年 | 50篇 |
1977年 | 42篇 |
1975年 | 50篇 |
1974年 | 39篇 |
1972年 | 35篇 |
1971年 | 35篇 |
1970年 | 37篇 |
1967年 | 33篇 |
排序方式: 共有7111条查询结果,搜索用时 0 毫秒
411.
E.S. Seo T. Anderson D. Angelaszek S.J. Baek J. Baylon M. Buénerd M. Copley S. Coutu L. Derome B. Fields M. Gupta J.H. Han I.J. Howley H.G. Huh Y.S. Hwang H.J. Hyun I.S. Jeong D.H. Kah K.H. Kang D.Y. Kim H.J. Kim K.C. Kim M.H. Kim K. Kwashnak J. Lee M.H. Lee J.T. Link L. Lutz A. Malinin A. Menchaca-Rocha J.W. Mitchell S. Nutter O. Ofoha H. Park I.H. Park J.M. Park P. Patterson J.R. Smith J. Wu Y.S. Yoon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented. 相似文献
412.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure
formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification
and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative
processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles
are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory
for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with
the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles
and turbulence. 相似文献
413.
L. Maraschi G. C. Perola A. Treves 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(13):67-70
The possibility of explaining the continuous emission of active galactic nuclei in the frame of a model of spherical accretion onto a massive black hole is discussed. Cool inhomogeneities (T 104°K) within the accretion flow could be responsible for the broad line emission if half of the accreting matter is in the dense phase. A crucial test of this hypothesis is the expected correlation between the ratio of the luminosity in lines to the total luminosity and the hardness of the continuous spectrum. 相似文献
414.
Saunders R.S. Arvidson R.E. Badhwar G.D. Boynton W.V. Christensen P.R. Cucinotta F.A. Feldman W.C. Gibbs R.G. Kloss C. Landano M.R. Mase R.A. McSmith G.W. Meyer M.A. Mitrofanov I.G. Pace G.D. Plaut J.J. Sidney W.P. Spencer D.A. Thompson T.W. Zeitlin C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months. 相似文献
415.
E. Caroli J. B. Stephen G. Di Cocco L. Natalucci A. Spizzichino 《Space Science Reviews》1987,45(3-4):349-403
416.
M.A. Van Zele A. Meza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
This paper studies the efficiency of geomagnetic solar flare effects (gsfe) in X solar flare detection; so during the period 1999–2007 a comparison between solar flare (sf) observed by satellites of the Geostationary Operational Environmental Satellite (GOES) programme and gsfe published by the Service International des Indices Geomagnetiques (SIIG) is made. 相似文献
417.
F A Cucinotta W Schimmerling J W Wilson L E Peterson P B Saganti J F Dicello 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1383-1389
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits. 相似文献
418.
419.
Aeolian (wind) processes can transport particles over large distances on Mars, leading to the modification or removal of surface features, formation of new landforms, and mantling or burial of surfaces. Erosion of mantling deposits by wind deflation can exhume older surfaces. These processes and their effects on the surface must be taken into account in using impact crater statistics to derive chronologies on Mars. In addition, mapping the locations, relative ages, and orientations of aeolian features can provide insight into Martian weather, climate, and climate history. 相似文献
420.
Stewart Nozette Paul Spudis Ben Bussey Robert Jensen Keith Raney Helene Winters Christopher L. Lichtenberg William Marinelli Jason Crusan Michele Gates Mark Robinson 《Space Science Reviews》2010,150(1-4):285-302
The Miniature Radio Frequency (Mini-RF) system is manifested on the Lunar Reconnaissance Orbiter (LRO) as a technology demonstration and an extended mission science instrument. Mini-RF represents a significant step forward in spaceborne RF technology and architecture. It combines synthetic aperture radar (SAR) at two wavelengths (S-band and X-band) and two resolutions (150 m and 30 m) with interferometric and communications functionality in one lightweight (16 kg) package. Previous radar observations (Earth-based, and one bistatic data set from Clementine) of the permanently shadowed regions of the lunar poles seem to indicate areas of high circular polarization ratio (CPR) consistent with volume scattering from volatile deposits (e.g. water ice) buried at shallow (0.1–1 m) depth, but only at unfavorable viewing geometries, and with inconclusive results. The LRO Mini-RF utilizes new wideband hybrid polarization architecture to measure the Stokes parameters of the reflected signal. These data will help to differentiate “true” volumetric ice reflections from “false” returns due to angular surface regolith. Additional lunar science investigations (e.g. pyroclastic deposit characterization) will also be attempted during the LRO extended mission. LRO’s lunar operations will be contemporaneous with India’s Chandrayaan-1, which carries the Forerunner Mini-SAR (S-band wavelength and 150-m resolution), and bistatic radar (S-Band) measurements may be possible. On orbit calibration, procedures for LRO Mini-RF have been validated using Chandrayaan 1 and ground-based facilities (Arecibo and Greenbank Radio Observatories). 相似文献