首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8276篇
  免费   18篇
  国内免费   25篇
航空   3779篇
航天技术   2903篇
综合类   27篇
航天   1610篇
  2021年   86篇
  2019年   52篇
  2018年   182篇
  2017年   119篇
  2016年   123篇
  2015年   59篇
  2014年   199篇
  2013年   264篇
  2012年   240篇
  2011年   370篇
  2010年   265篇
  2009年   396篇
  2008年   431篇
  2007年   241篇
  2006年   193篇
  2005年   227篇
  2004年   213篇
  2003年   255篇
  2002年   171篇
  2001年   282篇
  2000年   148篇
  1999年   197篇
  1998年   225篇
  1997年   145篇
  1996年   211篇
  1995年   243篇
  1994年   245篇
  1993年   138篇
  1992年   178篇
  1991年   58篇
  1990年   66篇
  1989年   170篇
  1988年   83篇
  1987年   71篇
  1986年   83篇
  1985年   228篇
  1984年   193篇
  1983年   138篇
  1982年   159篇
  1981年   248篇
  1980年   58篇
  1979年   52篇
  1978年   68篇
  1977年   47篇
  1975年   70篇
  1974年   51篇
  1973年   47篇
  1972年   48篇
  1971年   41篇
  1970年   44篇
排序方式: 共有8319条查询结果,搜索用时 15 毫秒
141.
The Gram-Schmidt orthogonalization (GSO) algorithm has excellent numerical performance and is readily applicable to systolic implementations such as in a field of adaptive cancellation systems. A modified GSO algorithm for a fully adaptive array is proposed and computer simulations show that the proposed algorithm gives superior performance. A systolic implementation of the proposed GSO algorithm for fully adaptive array is presented. A feedback mode GSO algorithm for use with analog weights is also presented and has been shown to have excellent performance in the presence of weight errors  相似文献   
142.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
143.
The designs of cold space telescopes, cryogenic and radiatively cooled, are similar in most elements and both benefit from orbits distant from the Earth. In particular such orbits allow the anti-sunward side of radiatively-cooled spacecraft to be used to provide large cooling radiators for the individual radiation shields. Designs incorporating these features have predictedT tel near 20 K. The attainability of such temperatures is supported by limited practical experience (IRAS, COBE). Supplementary cooling systems (cryogens, mechanical coolers) can be advantageously combined with radiative cooling in hybrid designs to provide robustness against deterioration and yet lower temperatures for detectors, instruments, and even the whole telescope. The possibility of such major additional gains is illustrated by the Very Cold Telescope option under study forEdison, which should offerT tel5 K for a little extra mechanical cooling capacity.  相似文献   
144.
An analysis is presented that forms the basis for an algorithm for calculating the IGBT losses in a power factor correction (PFC) circuit. The method employs experimental data from an off-line test circuit that closely resembles the switching conditions in the actual PFC. This technique provides calculated values of both the conduction and switching losses of the main transistor in a boost-type PFC circuit. Results for a 6 kW PFC are included  相似文献   
145.
Adaptive image segmentation using genetic and hybrid search methods   总被引:1,自引:0,他引:1  
This paper describes an adaptive approach for the important image processing problem of image segmentation that relies on learning from experience to adapt and improve the segmentation performance. The adaptive image segmentation system incorporates a feedback loop consisting of a machine learning subsystem, an image segmentation algorithm, and an evaluation component which determines segmentation quality. The machine learning component is based on genetic adaptation and uses (separately) a pure genetic algorithm (GA) and a hybrid of GA and hill climbing (HC). When the learning subsystem is based on pure genetics, the corresponding evaluation component is based on a vector of evaluation criteria. For the hybrid case, the system employs a scalar evaluation measure which is a weighted combination of the different criteria. Experimental results for pure genetic and hybrid search methods are presented using a representative database of outdoor TV imagery. The multiobjective optimization demonstrates the ability of the adaptive image segmentation system to provide high quality segmentation results in a minimal number of generations  相似文献   
146.
This study presents a methodology for specifying a neural controller for a system about which no a priori model information is available. The neural design presumes that a finite duration input/output (I/O) histogram on the system is available. The design procedure extracts from the histogram sufficient information to specify the neural feedback controller. The resultant controller will drive the system along a general output reference profile (unknown during the design). The resultant controller also exhibits the capability of disturbance rejection and the capacity to stabilize unstable plants  相似文献   
147.
We are in the process of surveying the linear polarization in luminous, early-type stars. We here report on new observations of the B [e] stars S 18 and R 50, and of the Luminous Blue Variables HR Car, R 143, and HD 160529. Together with previously published data, these observations provide clear evidence for the presence of intrinsic polarization in 1 B[e] star (HD 34664) and in 5 LBVs ( Car, P Cyg, R 127, AG Car, and HR Car). The data indicate that anisotropic stellar winds are a common occurrence among massive stars in these particular evolutionary stages. For such stars, mass-loss rates estimated using the assumption of a spherical, homogeneous and stationary outflow may be in error.  相似文献   
148.
The synodic recurrence of the Mt. Wilson plage index (MPSI) and the Calgary cosmic ray (CR) intensity is investigated, using the wavelet power spectra in the range of 18–38 days, during the last three solar cycles. The unique temporal coincidence between the quasi–synodic MPSI and the CR periods is detected in 1978–1982 (the 21st solar cycle). In the 22nd cycle there is a very strong MPSI synodic recurrence, from 1989.5 to 1990.5, but it is absent in the CR data. In 1992.5–1993.5 the MPSI and CR recurrence phenomenon is in good accordance with the solar wind speed and cosmic ray modulation as measured during the first Ulysses passage around the Sun. The Gnevyshev gap is present in the 27-day recurrence of CR, in agreement with Kudela et al. (1999). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
149.
The Electron Radiation Belt   总被引:4,自引:0,他引:4  
Electron radiation belts can change dramatically in a few seconds or slowly over years. Important issues in understanding such changes are: (1) What is the source of electrons in the radiation belts? (2) How important is radial diffusion compared to other radial transport mechanisms? (3) What are the detailed changes in the magnetosphere that produce radial diffusion? (4) Why is the response of the electron radiation belt to changes in the solar wind different from that of substorms and of the ring current? (5) Are processes other than radial transport, such as wave-particle interactions, important in energizing electrons in the radiation belts?  相似文献   
150.
Klumpar  D.M.  Möbius  E.  Kistler  L.M.  Popecki  M.  Hertzberg  E.  Crocker  K.  Granoff  M.  Tang  Li  Carlson  C.W.  McFadden  J.  Klecker  B.  Eberl  F.  Künneth  E.  Kästle  H.  Ertl  M.  Peterson  W.K.  Shelly  E.G.  Hovestadt  D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2 + molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号