首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8644篇
  免费   15篇
  国内免费   24篇
航空   3997篇
航天技术   2898篇
综合类   27篇
航天   1761篇
  2021年   85篇
  2019年   52篇
  2018年   232篇
  2017年   167篇
  2016年   135篇
  2015年   66篇
  2014年   199篇
  2013年   263篇
  2012年   254篇
  2011年   417篇
  2010年   306篇
  2009年   435篇
  2008年   457篇
  2007年   295篇
  2006年   193篇
  2005年   246篇
  2004年   217篇
  2003年   255篇
  2002年   171篇
  2001年   285篇
  2000年   148篇
  1999年   197篇
  1998年   225篇
  1997年   145篇
  1996年   211篇
  1995年   243篇
  1994年   245篇
  1993年   141篇
  1992年   179篇
  1991年   58篇
  1990年   66篇
  1989年   170篇
  1988年   83篇
  1987年   71篇
  1986年   82篇
  1985年   227篇
  1984年   193篇
  1983年   138篇
  1982年   159篇
  1981年   248篇
  1980年   58篇
  1979年   52篇
  1978年   68篇
  1977年   47篇
  1975年   70篇
  1974年   51篇
  1973年   47篇
  1972年   48篇
  1971年   41篇
  1970年   44篇
排序方式: 共有8683条查询结果,搜索用时 15 毫秒
271.
The use of gray-scale intensities together with the edge information present in a forward-looking infrared (FLIR) image to obtain a precise and accurate segmentation of a target is presented. A model of FLIR images based on gray-scale and edge information is incorporated in a gradient relaxation technique which explicitly maximizes a criterion function based on the inconsistency and ambiguity of classification of pixels with respect to their neighbors. Four variations of the basic technique which provide automatic selection of thresholds to segment FLIR images are considered. These methods are compared, and several examples of segmentation of ship images are given  相似文献   
272.
A technique which uses maximum-likelihood estimates (MLEs) of target Doppler and target amplitude is developed for rejecting clutter residues. Multiple estimates are made and consistency checks are applied to the estimates. Simulation results indicate that for large clutter-to-noise ratios (C/N⩾55 dB) the probability of false alarm from clutter residues is reduced from 1.0 to below 0.01  相似文献   
273.
A set of algorithms is presented for finding the best set of K mutually exclusive paths through a trellis of N nodes, with worst-case computation time bounded by N3log n for a fixed-precision computation. The algorithms are based on a transformation of the K-path trellis problem into an equivalent minimum-cost network flow (MCNF) problem. The approach allows the application of efficient MCNF algorithms, which can obtain optimal solutions orders of magnitude faster than the algorithm proposed by J.K. Wolf et al. (1989). The resulting algorithms extend the practicality of the trellis formulation (in terms of required computations) to multiobject tracking problems with much larger numbers of targets and false alarms. A response by Wolf et al. is included  相似文献   
274.
Application of digital cross-correlation spectroscopy to the spectra of the W Serpentis binaries SX Cas and RX Cas has allowed an accurate determination of the orbits and rotations of the (mass-losing) K-subgiant secondary components. The distortion of the primary radial-velocity curves due to the influence of the prominent accretion disks in these systems has been modelled to first order. This enables us to estimate k 1, and thereby the mass ratio q ≈ 0.30, to within ~ ± 20%. The absolute radii of the secondaries are derived independently from the observed rotations and periods, assuming synchronous rotation. They show that the stars fill their Roche lobes, or at least very nearly so. Rough fits to the available photometry shows both primaries to be unevolved mid-B stars; that in RX Cas appears completely obscured by the disk. Preliminary spectroscopic data for W Ser and W Cru show some promise for similar analyses of these systems.  相似文献   
275.
The Galileo spacecraft was launched by the Space Shuttle Atlantis on October 18, 1989. A two-stage Inertial Upper Stage propelled Galileo out of Earth parking orbit to begin its 6-year interplanetary transfer to Jupiter. Galileo has already received two gravity assists: from Venus on February 10, 1990 and from Earth on December 8, 1990. After a second gravity-assist flyby of Earth on December 8, 1992, Galileo will have achieved the energy necessary to reach Jupiter. Galileo's interplanetary trajectory includes a close flyby of asteroid 951-Gaspra on October 29, 1991, and, depending on propellant availability and other factors, there may be a second asteroid flyby of 243-Ida on August 28, 1993. Upon arrival at Jupiter on December 7, 1995, the Galileo Orbiter will relay data back to Earth from an atmospheric Probe which is released five months earlier. For about 75 min, data is transmitted to the Orbiter from the Probe as it descends on a parachute to a pressure depth of 20–30 bars in the Jovian atmosphere. Shortly after the end of Probe relay, the Orbiter ignites its rocket motor to insert into orbit about Jupiter. The orbital phase of the mission, referred to as the satellite tour, lasts nearly two years, during which time Galileo will complete 10 orbits about Jupiter. On each of these orbits, there will be a close encounter with one of the three outermost Galilean satellites (Europa, Ganymede, and Callisto). The gravity assist from each satellite is designed to target the spacecraft to the next encounter with minimal expenditure of propellant. The nominal mission is scheduled to end in October 1997 when the Orbiter enters Jupiter's magnetotail.List of Acronyms ASI Atmospheric Structure Instrument - EPI Energetic Particles Instrument - HGA High Gain Antenna - IUS Inertial Upper Stage - JOI Jupiter Orbit Insertion - JPL Jet Propulsion Laboratory - LRD Lightning and Radio Emissions Detector - NASA National Aeronautics and Space Administration - NEP Nephelometer - NIMS Near-Infrared Mapping Spectrometer - ODM Orbit Deflection Maneuver - OTM Orbit Trim Maneuver - PJR Perijove Raise Maneuver - PM Propellant Margin - PDT Pacific Daylight Time - PST Pacific Standard Time - RPM Retropropulsion Module - RRA Radio Relay Antenna - SSI Solid State Imaging - TCM Trajectory Correction Maneuver - UTC Universal Time Coordinated - UVS Ultraviolet Spectrometer - VEEGA Venus-Earth-Earth Gravity Assist  相似文献   
276.
The gravitation and celestial mechanics investigations during the cruise phase and Orbiter phase of the Galileo mission depend on Doppler and ranging measurements generated by the Deep Space Network (DSN) at its three spacecraft tracking sites in California, Australia, and Spain. Other investigations which also rely on DSN data, and which like ours fall under the general discipline of spacecraft radio science, are described in a companion paper by Howard et al. (1992). We group our investigations into four broad categories as follows: (1) the determination of the gravity fields of Jupiter and its four major satellites during the orbital tour, (2) a search for gravitational radiation as evidenced by perturbations to the coherent Doppler link between the spacecraft and Earth, (3) the mathematical modeling, and by implication tests, of general relativistic effects on the Doppler and ranging data during both cruise and orbiter phases, and (4) an improvement in the ephemeris of Jupiter by means of spacecraft ranging during the Orbiter phase. The gravity fields are accessible because of their effects on the spacecraft motion, determined primarily from the Doppler data. For the Galilean satellites we will determine second degree and order gravity harmonics that will yield new information on the central condensation and likely composition of material within these giant satellites (Hubbard and Anderson, 1978). The search for gravitational radiation is being conducted in cruise for periods of 40 days centered around solar opposition. During these times the radio link is least affected by scintillations introduced by solar plasma. Our sensitivity to the amplitude of sinusoidal signals approaches 10-15 in a band of gravitational frequencies between 10-4 and 10-3 Hz, by far the best sensitivity obtained in this band to date. In addition to the primary objectives of our investigations, we discuss two secondary objectives: the determination of a range fix on Venus during the flyby on 10 February, 1990, and the determination of the Earth's mass (GM) from the two Earth gravity assists, EGA1 in December 1990 and EGA2 in December 1992.  相似文献   
277.
A detector which is designed to operate in a correlated Gaussian-plus-impulsive-noise environment is presented. The detector whitens the data robustly and then uses a two-sided threshold test to determine the presence of impulsive samples. The impulsive samples are discarded, and the remaining samples are used to detect the presence or absence of a signal using a matched filter. An approximate analysis is presented, and simulations are used to demonstrate the effectiveness of this approach  相似文献   
278.
Polish radar research and development since 1953 is reviewed, covering the development and production of surveillance radars, height finders, tracking radars, air traffic control (ATC) radars and systems, and marine and Doppler radars. Some current work, including an L-band ATC radar for enroute control, a weather channel for primary surveillance radar, signal detection in non-Gaussian clutter, adaptive MTI filters and postdetection filtering, and a basic approach to radar polarimetry, is examined.<>  相似文献   
279.
A new EXOSAT (LE/CMA) observation of the region in Crux (R.A. 11h 45m, Dec. -62°) where Markert et al. (1981) reported the existence of two x-ray SNR's is presented. After cleaning the CMA field from the point source component, due to the UV emission of the numerous stars in the field, the smoothed x-ray contours are compared to the 408 MHz radio map of Caswell et al. (1983). The existence of two, well-separate x-ray emission regions is confirmed by EXOSAT, and the current x-ray/radio picture is not sufficent to distinguish clearly between the assumption of one or two (possibly interacting) SNR's in the region.  相似文献   
280.
In the theory of signal detectability, the signal-to-noise ratio (SNR), defined as the quotient of the average received signal energy and the spectral density of the white Gaussian noise, is a fundamental parameter. For a signal which is exactly known, or known except for a random phase, this ratio uniquely defines the detection performance which can be achieved with a matched filter receiver. However, when the signal amplitude is a random parameter, the detection performance is changed and must be determined from the probability density function (pdf) of the amplitude. Relative to the case of a constant signal amplitude, such signal amplitude fluctuation usually degrades performance when a high probability of detection (Pd) is required, but improves performance at low values of Pd; the corresponding change in the required SNR is the so-called signal fluctuation loss Lf. Thus, since Lf in some cases represents an improvement in performance for low values of Pd, a question of at least theoretical interest is: how large might this improvement be, when the class of all signal amplitude pdf's is considered. The solution, presented here, results in a lower bound on the signal fluctuation loss Lf as a function of Pd, or equivalently an upper bound on Pd as a function of SNR. The corresponding most favorable pdf was determined using the Lagrange multiplier technique and results of a numerical maximization are included to provide insight into the general properties of the solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号