首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8647篇
  免费   18篇
  国内免费   25篇
航空   3998篇
航天技术   2904篇
综合类   27篇
航天   1761篇
  2021年   86篇
  2019年   52篇
  2018年   233篇
  2017年   168篇
  2016年   135篇
  2015年   67篇
  2014年   199篇
  2013年   264篇
  2012年   254篇
  2011年   417篇
  2010年   306篇
  2009年   435篇
  2008年   457篇
  2007年   295篇
  2006年   193篇
  2005年   246篇
  2004年   217篇
  2003年   255篇
  2002年   171篇
  2001年   285篇
  2000年   148篇
  1999年   197篇
  1998年   225篇
  1997年   145篇
  1996年   211篇
  1995年   243篇
  1994年   245篇
  1993年   141篇
  1992年   179篇
  1991年   58篇
  1990年   66篇
  1989年   170篇
  1988年   83篇
  1987年   71篇
  1986年   83篇
  1985年   228篇
  1984年   193篇
  1983年   138篇
  1982年   159篇
  1981年   248篇
  1980年   58篇
  1979年   52篇
  1978年   68篇
  1977年   47篇
  1975年   70篇
  1974年   51篇
  1973年   47篇
  1972年   48篇
  1971年   41篇
  1970年   44篇
排序方式: 共有8690条查询结果,搜索用时 10 毫秒
191.
A method of using AGNs as cosmological probes and some recent results are discussed. The method is based on fitting the Hedgehog model to observations of spectra, structure and polarization of AGN radio emission and time variations of the observed quantities. If red shifts of selected AGNs are known, extragalactic distances, the Hubble constant and the deceleration parameter of the Universe can be measured using only radio observations. Recent results may give new strong arguments for the basic model to be in agreement with observations of variable spectra and structure of many AGNs, and may allow preliminary selection of AGNs for further use.  相似文献   
192.
Human computational vision models that attempt to account for the dynamic perception of egomotion and relative depth typically assume a common three-stage process: first, compute the optical flow field based on the dynamically changing image; second, estimate the egomotion states based on the flow; and third, estimate the relative depth/shape based on the egomotion states and possibly on a model of the viewed surface. We propose a model more in line with recent work in human vision, employing multistage integration. Here the dynamic image is first processed to generate spatial and temporal image gradients that drive a mutually interconnected state estimator and depth/shape estimator. The state estimator uses the image gradient information in combination with a depth/shape estimate of the viewed surface and an assumed model of the viewer's dynamics to generate current state estimates; in tandem, the depth/shape estimator uses the image gradient information in combination with the viewer's state estimate and assumed shape model to generate current depth/shape estimates. In this paper, we describe the model and compare model predictions with empirical data.  相似文献   
193.
We address the question of design and optimal control of a class of dual-spacecraft interferometric imaging formations. The first main contribution is that we combine two ideas introduced separately in the literature and propose a maneuver that offers improved imaging performance. We then formulate an optimal control problem to minimize fuel consumption and maximize image quality by minimizing the relative speed, which is proportional to the signal-to-noise ratio (SNR) of the reconstructed image. We show that the necessary conditions are also sufficient and that the resulting optimal control is unique. Finally, we apply a continuation method to solve for the unique optimal trajectory.  相似文献   
194.
Future space missions aiming at the accurate measurement of cold plasmas and DC to very low frequency electric fields will require that the potential of their conductive surfaces be actively controlled to be near the ambient plasma potential. In the near-Earth space these spacecraft are usually solar-cell powered; consequently, parts of their surface are most of the time exposed to solar photons. Outside the plasmasphere, a positive surface potential due the dominance of surface-emitted photoelectrons over ambient plasma electrons is to be expected. Photo- and ambient electrons largely determine the potential and positive values between a few Volts up to 100 V have been observed. Active ion emission is the obvious solution of this problem. A liquid metal ion emitter and a saddle field ion emitter are nearing the stage of flight unit fabrication. We will attempt to clamp the spacecraft potential to values close to the plasma potential. We present first results from vacuum chamber tests and describe the emission behaviour and characteristics of emitters producing, respectively, In+ and N2+ beams with an energy of ≥ 5 keV.  相似文献   
195.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   
196.
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air.  相似文献   
197.
After initial emphasis on large-scale baseline crop tests, the Kennedy Space Center (KSC) Breadboard project has begun to evaluate long-term operation of the biomass production system with increasing material closure. Our goal is to define the minimum biological processing necessary to make waste streams compatible with plant growth in hydroponic systems, thereby recycling nutrients into plant biomass and recovering water via atmospheric condensate. Initial small and intermediate-scale studies focused on the recycling of nutrients contained in inedible plant biomass. Studies conducted between 1989-1992 indicated that the majority of nutrients could be rapidly solubilized in water, but the direct use of this crop "leachate" was deleterious to plant growth due to the presence of soluble organic compounds. Subsequent studies at both the intermediate scale and in the large-scale Biomass Production Chamber (BPC) have indicated that aerobic microbiological processing of crop residue prior to incorporation into recirculating hydroponic solutions eliminated any phytotoxic effect, even when the majority of the plant nutrient demand was provided from recycled biomass during long term studies (i.e. up to 418 days). Current and future studies are focused on optimizing biological processing of both plant and human waste streams.  相似文献   
198.
The results of experiments aboard spacecraft demonstrated the dependence of the pattern of biological processes on microgravity and on the ability of biological objects to adapt themselves to new environmental conditions. This is of fundamental importance for solving theoretical and practical problems of space biology, or elaborating the theory of organism's behavior in weightlessness, and for elucidating the global mechanisms of the action of microgravity on living systems.  相似文献   
199.
200.
We describe the design and calibration of the Far-Infrared Photometer (FIRP), one of four focal plane instruments on the Infrared Telescope in Space (IRTS). The FIRP will provide absolute photometry in four bands centered at 150, 250, 400, and 700 μm with spectral resolution λ/Δλ ≈ 3 and spatial resolution ΔΘ = 0.5 degrees. High sensitivity is achieved by using bolometric detectors operated at 300 mK in an AC bridge circuit. The closed-cycle 3He refrigerator can be recycled in orbit. A 2 K shutter provides a zero reference for each field of view. More than 10% of the sky will be surveyed during the ≈3 week mission lifetime with a sensitivity of <10−13 W·cm−2·sr−1 per 0.5 degree pixel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号