首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8359篇
  免费   35篇
  国内免费   18篇
航空   3868篇
航天技术   2904篇
综合类   27篇
航天   1613篇
  2021年   86篇
  2019年   52篇
  2018年   224篇
  2017年   140篇
  2016年   123篇
  2015年   60篇
  2014年   199篇
  2013年   266篇
  2012年   240篇
  2011年   378篇
  2010年   268篇
  2009年   397篇
  2008年   432篇
  2007年   243篇
  2006年   193篇
  2005年   225篇
  2004年   214篇
  2003年   255篇
  2002年   172篇
  2001年   287篇
  2000年   148篇
  1999年   197篇
  1998年   225篇
  1997年   145篇
  1996年   211篇
  1995年   243篇
  1994年   245篇
  1993年   140篇
  1992年   179篇
  1991年   58篇
  1990年   66篇
  1989年   170篇
  1988年   83篇
  1987年   71篇
  1986年   83篇
  1985年   228篇
  1984年   193篇
  1983年   138篇
  1982年   159篇
  1981年   248篇
  1980年   58篇
  1979年   52篇
  1978年   68篇
  1977年   47篇
  1975年   70篇
  1974年   51篇
  1973年   47篇
  1972年   48篇
  1971年   41篇
  1970年   44篇
排序方式: 共有8412条查询结果,搜索用时 15 毫秒
121.
The circadian timing system (CTS) is responsible for daily temporal coordination of physiological and behavioral functions both internally and with the external environment. Experiments in altered gravitational environments have revealed changes in circadian rhythms of species ranging from fungi to primates. The altered gravitational environments examined included both the microgravity environment of spaceflight and hyperdynamic environments produced by centrifugation. Acute exposure to altered gravitational environments changed homeostatic parameters such as body temperature. These changes were time of day dependent. Exposure to gravitational alterations of relatively short duration produced changes in both the homeostatic level and the amplitude of circadian rhythms. Chronic exposure to a non-earth level of gravity resulted in changes in the period of the expressed rhythms as well as in the phase relationships between the rhythms and between the rhythms and the external environment. In addition, alterations in gravity appeared to act as a time cue for the CTS. Altered gravity also affected the sensitivity of the pacemaker to other aspects of the environment (i.e., light) and to shifts of time cues. Taken together, these studies lead to the conclusion that the CTS is indeed sensitive to gravity and its alterations. This finding has implications for both basic biology and space medicine.  相似文献   
122.
The author outlines several rules for starting electrical engineers that he developed during his career. The rules are divided into general rules, rules for career growth, and job-related rules  相似文献   
123.
The photolysis of mixtures of gases containing NH3 or PH3 presents important differences mainly due to the strength of the X-H bond. On some examples, these differences are evidenced and the consequences for mixtures of gases containing these two compounds are shown: the photolysis of ammonia and ethylene mainly gives ethyl-, butyl- and hexylamine whereas the photolysis of phosphine and ethylene leads to ethyl- and vinylphosphine. When gaseous mixtures of NH3, PH3 and ethylene are photolyzed together, the presence of phosphine dramatically decreases the formation of nitrogen derivatives. The relevance of such lab studies to the atmospheres of Jupiter and Saturn is discussed.  相似文献   
124.
Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source.  相似文献   
125.
The patterns of reconnection in the Earth magnetotail and in the solar corona above the active region are presented. The electric field and field-aligned currents (FAC) generation in the current sheet are discussed.  相似文献   
126.
Seven growth chamber trials (six replicate trials using 0.035, 0.12, and 0.25% CO2 in air and one trial using 0.12, 0.80, and 2.0% CO2 in air) and three replicate greenhouse trials (0.035, 0.10, 0.18, 0.26, 0.50, and 1.0% CO2 in air) compare the effects of super-optimal CO2 on the seed yield, harvest index, and vegetative growth rate of wheat (Triticum aestivum L. cvs. USU-Apogee and Veery-10). Plants in the growth chamber trials were grown hydroponically under fluorescent lamps, while the greenhouse trials were grown under sunlight and high pressure sodium lamps and in soilless media. Plants in the greenhouse trials responded similarly to those in the growth chamber trials; maximum yields occurred near 0.10 and 0.12% CO2 and decreased significantly thereafter. This research indicates that the toxic effects of elevated CO2 are not specific to only one environment and has important implications for the design of bio-regenerative life support systems in space, and for the future of terrestrial agriculture.  相似文献   
127.
The major functions of soil relative to plant growth include retention and supply of water and minerals, provision of anchorage and support for the root, and provision of an otherwise adequate physical and chemical environment to ensure an extensive, functioning root system. The physical and chemical nature of the solid matrix constituting a soil interacts with the soil confinement configuration, the growing environment, and plant requirements to determine the soil's suitability for plant growth. A wide range of natural and manufactured terrestrial materials have proven adequate soils provided they are not chemically harmful to plants (or animals eating the plants), are suitably prepared for the specific use, and are used in a compatible confinement system. It is presumed this same rationale can be applied to planetary soils for growing plants within any controlled environment life support system (CELSS). The basic concepts of soil and soil-plant interactions are reviewed relative to using soils constituted from local planetary materials for growing plants.  相似文献   
128.
Thin films containing a mixture of aliphatic (glycine) and aromatic (tryptophan or tyrosine) amino acids were exposed to a vacuum ultraviolet radiation (VUV) with wavelenghts 100–200 nm. Dipeptides (glycyl-tryptophan and glycyl-tyrosine) were synthesized in these conditions. We compared the actions of VUV and γ-radiation. Polymerization is an essential step in prebiological evolution and we have shown that this stage probably occured over an early Solar system history.  相似文献   
129.
Our experiments examined enhancing tolerance of the photosynthesizing component to possible deviations in thermal or illumination conditions inside a bioregenerative life support system (BLSS). In the event of one parameter getting beyond its optimum, the values of other parameters may ensure minimal damage to the plant component during the period of environmental stress. With wheat plants (one of key elements of the plant component) as an example the work considers whether it is possible to enhance thermal tolerance by varying light intensity. Increase of air temperature to 35 degrees C or 45 degrees C with light intensity of 60 W/m2 PAR has been shown to substantially inhibit the photosynthesis processes; at 150 W/m2 PAR photosynthesis decreases from 50% to 100%, respectively; when light intensity is increased to 240 W/m2 PAR photosynthesis increased more than 70% at 35 degrees C and decreased at 45 degrees C by only 20%. Thus, light intensity can be increased to avoid or decrease the inhibiting effect of high temperatures. On the other hand, tolerance of wheat plants to prolonged absence of light can be substantially enhanced by decreasing during this period air temperature to temperatures close to 0 degrees C.  相似文献   
130.
The entry of energetic solar protons to the polar caps offers an interesting way to test models of the geomagnetic field. In this brief report, we present a comparison between SAMPEX observations of solar-particle intensity structure during a polar cap traversal with numerical trajectory calculations using the IGRF + T96 field model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号