全文获取类型
收费全文 | 7805篇 |
免费 | 39篇 |
国内免费 | 18篇 |
专业分类
航空 | 3445篇 |
航天技术 | 2727篇 |
综合类 | 25篇 |
航天 | 1665篇 |
出版年
2021年 | 81篇 |
2019年 | 48篇 |
2018年 | 180篇 |
2017年 | 133篇 |
2016年 | 129篇 |
2015年 | 55篇 |
2014年 | 201篇 |
2013年 | 244篇 |
2012年 | 241篇 |
2011年 | 362篇 |
2010年 | 261篇 |
2009年 | 383篇 |
2008年 | 433篇 |
2007年 | 249篇 |
2006年 | 179篇 |
2005年 | 216篇 |
2004年 | 211篇 |
2003年 | 245篇 |
2002年 | 174篇 |
2001年 | 263篇 |
2000年 | 144篇 |
1999年 | 176篇 |
1998年 | 206篇 |
1997年 | 125篇 |
1996年 | 191篇 |
1995年 | 224篇 |
1994年 | 200篇 |
1993年 | 132篇 |
1992年 | 162篇 |
1991年 | 54篇 |
1990年 | 58篇 |
1989年 | 158篇 |
1988年 | 66篇 |
1987年 | 66篇 |
1986年 | 77篇 |
1985年 | 216篇 |
1984年 | 168篇 |
1983年 | 122篇 |
1982年 | 136篇 |
1981年 | 238篇 |
1980年 | 59篇 |
1979年 | 50篇 |
1978年 | 54篇 |
1977年 | 51篇 |
1975年 | 56篇 |
1974年 | 48篇 |
1973年 | 40篇 |
1972年 | 36篇 |
1971年 | 38篇 |
1970年 | 40篇 |
排序方式: 共有7862条查询结果,搜索用时 0 毫秒
41.
42.
The High Reynolds Number Aero-Structural Dynamics (HIRENASD) project is conducted by the Collaborative Research Center “Flow Modulation and Fluid-Structure Interaction at Airplane Wings (SFB 401)” at RWTH Aachen University. It is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) since 2004. Steady and unsteady state experiments with an elastic semispan wing model were performed under transonic and high Reynolds number conditions in the European Transonic Windtunnel (ETW) in Cologne, Germany. The main components of the complete windtunnel assembly were the wing model itself, a piezoelectric 6-components balance and a mechanical excitation mechanism able to excite the wing model at selected resonance frequencies. These components were designed, sized and assembled at the Department of Aerospace and Lightweight Structures at RWTH Aachen University. The dynamic qualification of the windtunnel assembly under wind-off condition was carried out in the department's test laboratory. Modal survey testing based on the hammer impact method was performed, as well as response decomposition analysis using enforced excitation by means of the mechanical excitation mechanism itself. Within the qualification, a test procedure enabling investigations of modal parameter changes under wind-off and wind-on conditions in a cryogenic windtunnel was also verified. 相似文献
43.
A. V. Zyuzgin A. I. Ivanov V. I. Polezhaev G. F. Putin E. B. Soboleva 《Cosmic Research》2001,39(2):175-186
The results of processing and interpreting the data of joint Russian–French experiments for studying the heat and mass transfer in near-critical fluids are presented. The experiments were carried out with the ALICE-1 instrument during an orbital flight of the Mirstation from September 30 to October 2, 1995 [1]. For such fluids with a point-like source of heat, when they are placed in the field of uncontrolled inertial accelerations of the spacecraft, the influence of thermovibrational and thermogravitational mechanisms of convection on the propagation of the region of optical irregularity is investigated. It is shown that, near the thermodynamic critical point, local heating of the medium leads to generation of either intense thermogravitational convection or averaged vibroconvective flow, depending on the frequency of variations of the microaccelerations. The structure and characteristics of discovered motions are studied. The results of numerical simulations are presented that confirm the conclusion about a possibility of generation of an averaged convective flow of a vibrational type by the high-frequency component of microaccelerations. 相似文献
44.
K. Fayazbakhsh A. Abedian 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Using low power electronic devices for space applications to reduce the mass and energy consumption has lead to electromagnetic interference (EMI) problem. Electronic enclosures are used to shield electronic devices against EMI. In the past, electromagnetic shielding has been mainly the only criteria considered in electronic enclosure design. However, there are several structural and thermal requirements for selection of shielding materials which should also be taken into account. In this research work, three quantitative materials selection methods, i.e. Digital Logic (DL), Modified Digital Logic (MDL), and Z-transformation, are employed to select the best material from among a list of candidate materials. Composite and metallic electronic enclosures are explored and the best material is selected. Z-transformation method is applicable to both of the considered case studies while DL and MDL can only be used for solving one of them. Z-transformation method ranks aluminum as the first choice among various metallic materials. The wide range of Z-transformation application and its practical results confirm the superiority of Z-transformation method over DL and MDL methods. 相似文献
45.
The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties. 相似文献
46.
Clinorotation reduces number, but not size, of cartilaginous nodules formed in micromass cultures of mouse limbbud cells. 总被引:1,自引:0,他引:1
P J Duke D Montufar-Solis T Hamazaki A Sato 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1065-1072
In previous studies we used a ground based model to investigate the cellular responses to microgravity by exposing micromass cultures of embryonic limb cells to simulated weightlessness on a clinostat. Cultures set up in T-flasks and rotated at 30 rpm showed that clinostatted cultures had less chondrocyte differentiation than stationary or rotation controls, as assessed by number of nodules/culture stained with cartilage specific Alcian blue. In the current study, nodule size and shape of these nodules was assessed by interactive measurement of area, perimeter, circularity, and equivalent diameters, using the Optimas imaging software. Results show no significant difference in any of the measurements, indicating that clinorotation has no effect on expansion of the nodules either by differentiation of cells within the nodule, or by recruitment of cells into the nodule. The reduction in number of nodules without an alteration in size and shape indicates that the effect of simulated microgravity is to reduce the cell interactions required for the initial condensation of cells into a nodule, probably by interference with cell adhesion molecules. 相似文献
47.
48.
The planetary radio astronomy experiment will measure radio spectra of planetary emissions in the range 1.2 kHz to 40.5 MHz. These emissions result from wave-particle-plasma interactions in the magnetospheres and ionospheres of the planets. At Jupiter, they are strongly modulated by the Galilean satellite Io.As the spacecraft leave the Earth's vicinity, we will observe terrestrial kilometric radiation, and for the first time, determine its polarization (RH and LH power separately). At the giant planets, the source of radio emission at low frequencies is not understood, but will be defined through comparison of the radio emission data with other particles and fields experiments aboard Voyager, as well as with optical data. Since, for Jupiter, as for the Earth, the radio data quite probably relate to particle precipitation, and to magnetic field strength and orientation in the polar ionosphere, we hope to be able to elucidate some characteristics of Jupiter auroras.Together with the plasma wave experiment, and possibly several optical experiments, our data can demonstrate the existence of lightning on the giant planets and on the satellite Titan, should it exist. Finally, the Voyager missions occur near maximum of the sunspot cycle. Solar outburst types can be identified through the radio measurements; when the spacecraft are on the opposite side of the Sun from the Earth we can identify solar flare-related events otherwise invisible on the Earth. 相似文献
49.
In order to stabilize the altitude calculation in an inertial navigation system, an altimeter is commonly used. In a conventional local-level mechanization, this is generally accomplished by correcting the vertical channel integrators with the difference between the inertial system and altimeter indication of vertical position. However, in a space-stable system the procedure is not as clear since a vertical channel is not physically present. Three altitude damping mechanizations for a space-stable inertial navigation system are proposed. The equivalent local-level mechanizations are then found by comparing error propagation equations in a common coordinate frame. 相似文献
50.
In radars that achieve a high subclutter visibility by coherent processing over several pulses, a serious problem appears in the form of blind Dopplers, or ?speeds,? at which target detection is impossible. Of the possible methods of eliminating these blind speeds, the most basic one that is employed when the performance requirements are high involves the use of several PRF's. These PRF's are chosen so that coverage is obtained at any Doppler with at least one PRF. The problem faced by the radar designer is to select the set of PRF's and the pulse numbers for each PRF so that the search frame time is minimized. This paper evolves a systematic method for the design of the blind-speed elimination scheme. A formalized approach is offered that shows the possible combinations of wavelength, PRF, and pulse number and the tradeoffs involved, without introducing the confusion ordinarily associated with multiparameter choices. 相似文献