全文获取类型
收费全文 | 8891篇 |
免费 | 54篇 |
国内免费 | 17篇 |
专业分类
航空 | 4175篇 |
航天技术 | 3052篇 |
综合类 | 31篇 |
航天 | 1704篇 |
出版年
2021年 | 88篇 |
2019年 | 60篇 |
2018年 | 183篇 |
2017年 | 123篇 |
2016年 | 128篇 |
2015年 | 63篇 |
2014年 | 213篇 |
2013年 | 256篇 |
2012年 | 253篇 |
2011年 | 373篇 |
2010年 | 275篇 |
2009年 | 405篇 |
2008年 | 453篇 |
2007年 | 266篇 |
2006年 | 199篇 |
2005年 | 237篇 |
2004年 | 229篇 |
2003年 | 278篇 |
2002年 | 189篇 |
2001年 | 300篇 |
2000年 | 172篇 |
1999年 | 211篇 |
1998年 | 246篇 |
1997年 | 151篇 |
1996年 | 229篇 |
1995年 | 274篇 |
1994年 | 260篇 |
1993年 | 150篇 |
1992年 | 209篇 |
1991年 | 75篇 |
1990年 | 79篇 |
1989年 | 195篇 |
1988年 | 86篇 |
1987年 | 77篇 |
1986年 | 89篇 |
1985年 | 246篇 |
1984年 | 196篇 |
1983年 | 164篇 |
1982年 | 176篇 |
1981年 | 263篇 |
1980年 | 71篇 |
1979年 | 64篇 |
1978年 | 69篇 |
1977年 | 60篇 |
1975年 | 80篇 |
1974年 | 58篇 |
1973年 | 46篇 |
1972年 | 61篇 |
1971年 | 51篇 |
1970年 | 50篇 |
排序方式: 共有8962条查询结果,搜索用时 15 毫秒
921.
Aerodynamic characteristics of two-dimensional smart flap under the ground effect have been assessed by a numerical simulation. In this process, a pressure-based implicit procedure to solve Navier–Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is used. The boundedness criteria for this procedure are determined from the Normalized Variable Diagram (NVD) scheme. The procedure incorporates the k–ε eddy–viscosity turbulence model. Cantilever beam with uniformly varying load with roller support at the free end is considered for the configuration of the smart flap. The method is first validated against experimental data. Then, the algorithm is applied for turbulent aerodynamic flows around airfoil with smart and conventional flaps for different attack angle, flap angle and ground clearance where the results of two flaps are compared. The comparisons show that the quality of the solution is considerable. 相似文献
922.
Neri J. A. C. F. Dos Santos W. A. Rabay S. Fonseca I. M. De Souza P. N. Cividanes L. B. T. De Paula A. R. Oliveira Filho O. B. Almeida M. C. P. Francisco M. F. M. Varotto S. E. C. Ribeiro M. S. Saturno M. E. 《Acta Astronautica》1996,39(9-12):707-709
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment). 相似文献
923.
D. S. Ivanov N. A. Ivlev S. O. Karpenko M. Yu. Ovchinnikov D. S. Roldugin S. S. Tkachev 《Cosmic Research》2014,52(3):205-215
The attitude control system of the Chibis-M microsatellite is described. Results of flight experiments on damping the initial angular velocity (made using magnetorquers) are considered, as well as stabilization in the orbital referece frame, and orientation of solar arrays toward the Sun using reaction wheels. The operation of algorithms of satellite attitude determination on sunlit and shadow segments of the orbit is also under study. The general logic of operation of the attitude control system in automatic mode is presented and discussed. 相似文献
924.
Boston PJ Spilde MN Northup DE Melim LA Soroka DS Kleina LG Lavoie KH Hose LD Mallory LM Dahm CN Crossey LJ Schelble RT 《Astrobiology》2001,1(1):25-55
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms. 相似文献
925.
S. Narendranath P.S. Athiray P. Sreekumar V. Radhakrishna A. Tyagi B.J. Kellett the CLASS team 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Surface chemistry of airless bodies in the solar system can be derived from remote X-ray spectral measurements from an orbiting spacecraft. X-rays from planetary surfaces are excited primarily by solar X-rays. Several experiments in the past have used this technique of X-ray fluorescence for deriving abundances of the major rock forming elements. The Chandrayaan-2 orbiter carries an X-ray fluorescence experiment named CLASS that is designed based on results from its predecessor C1XS flown on Chandrayaan-1. We discuss the new aspects of lunar science that can be potentially achieved with CLASS. 相似文献
926.
D. D. Burgess 《Space Science Reviews》1972,13(4-6):493-527
Work under the heading of Laboratory Plasma Spectroscopy may be conveniently separated into three classes depending on the extent to which the interaction of the emitting atoms with their plasma environment is central to the investigation. Zero order, the longest established use of laboratory plasmas in connection with astrophysics, concerns the use of hot plasmas for the excitation, measurement, and identification of the spectra of highly-stripped ions. In such work the properties of the plasma itself are usually of secondary importance. In first-order, plasma spectroscopy is used to determine fundamental atomic data concerned with the interaction of an atom with a single particle, usually either a photon or an electron, i.e.: the determination of oscillator strengths and collision cross-sections. Finally, higher-order processes in which the plasma nature of the surrounding medium is most relevant concern the study of line-shapes, and related topics such as the excitation of satellite spectral features by plasma oscillations. Developments in plasma diagnostic techniques in the last five years have greatly extended the scope of the second and third categories and have yielded much astrophysically important information from laboratory studies. Recent advances in these areas are reviewed. 相似文献
927.
E.?A.?Prokopenko "mailto:prokopenko_work@mail.ru " title= "prokopenko_work@mail.ru " itemprop= "email " data-track= "click " data-track-action= "Email author " data-track-label= " ">Email author S.?Yu.?Pirogov 《Cosmic Research》2018,56(3):199-207
The results of numerical calculation of the dependences of the electron density, the eigenfrequency and the dielectric plasma permeability on the geometric parameters and the altitude of body motion in the near and far wake behind a thin conical body with a spherical nose blunting have been presented. The electron density maximum has been shown to be located in the region of the neck of the near wake behind the body, which determines the type of this region (supercritical or subcritical). This in turn affects the propagation of radio waves through this plasma region. A comparative analysis was performed for two different bodies with the same ballistic coefficient values. No characteristic distinctions were revealed in the values of electron density or the plasma eigenfrequency in the near and far wake behind these bodies. However, it has been shown that there are differences in the values of the distance from the bottom cross section to the neck of the near wake behind these bodies. 相似文献
928.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. 相似文献
929.
Battery charger design for the Columbus MTFF power system 总被引:1,自引:0,他引:1
van Dijk K. Klaassens J.B. Spruijt H.J.N. O'Sullivan D.M. 《IEEE transactions on aerospace and electronic systems》1997,33(1):29-37
A novel pulsewidth-modulated (PWM) dc-dc converter topology is proposed for the battery charge regulator (BCR) of the Columbus Man-Tended Free-Flyer (MTFF) power system. The system is a regulated bus system. Bus voltage control is implemented at the input of the BCR. The use of a conventional buck topology with PWM conductance control at the input results in a second-order behavior. A study of new PWM dc-dc converter topologies has been made to attain a suitable topology. The proposed converter topology is designed and a breadboard including the control loop has been built and tested. The experimental results show that the converter operates according to the design constraints. 相似文献
930.
E. Echer W.D. Gonzalez A. Dal Lago L.E.A. Vieira F.L. Guarnieri A.L.C. Gonzalez N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2313-2317
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2. 相似文献