Amphibians possess the ability to vomit in response to a variety of stimuli that provoke emesis in mammals. Pharmacological studies have establish that the ejection of gastric contents and the basic mechanism for vomiting have been phylogenetically conserved among these tetrapods. As part of on-going comparative studies on emesis in vertebrates, we previously documented that some postmetamorphic anurans and salamander larvae experience motion-induced emesis when exposed to the provocative stimulus of parabolic aircraft flight. However, more recent experiments suggest that there are strict conditions for inducing emesis in amphibians exposed to parabolic flight and that amphibians are not as sensitive to this stimulus as mammals. Further studies on emesis in lower vertebrates may help us understand the processes that cause emesis in abnormal gravitational regimes. 相似文献
We analyzed high-angular rate streaks first recorded by OSIRIS-REx’s MapCam during a 2017 search for Earth Trojan asteroids. We interpret them as water-ice particles that translated across the imager’s field of view, originating from the spacecraft itself. Their translation velocities approximated 0.1–1?m/s based on reasonable conclusions about their range. Pursuing several lines of investigation to seek a coherent hypothesis, we conclude that the episodic releases of the water ice particles are associated with spacecraft attitudes that resulted in solar illumination of previously shadowed regions. This correlation suggests that the OSIRIS-REx spacecraft itself possesses micro-climatic zones consisting of hot regions and cold traps that may temporarily potentially pass volatiles back and forth before losing most of them. 相似文献
EPONA is an energetic particle detector system incorporating totally depleted silicon surface barrier layer detectors. Active and passive background shielding will be employed and, by applying various techniques, particles of different species, including electrons, protons, alpha particles and pick-up ions of cometary origin may be detected over a wide spectrum of energies extending from the tens of KeV into the MeV range.
The instrument can operate in two modes namely (a) in a cruise phase or storage mode and (b) in a real time mode. During the real time mode, observations at high spatial (octosectoring) and temporal (0.5s) resolution in the cometary environment permit studies to be made of accelerated particles at the bow shock and/or in the tail of the comet. In conjunction with magnetic field measurements on board Giotto, observations of energetic electrons and their anisotropies can determine whether the magnetic field lines in the cometary tail are open or closed. Further, the absorption of low energy solar particles in the cometary atmosphere can be measured and such data would provide an integral value of the pertaining gas and dust distribution. Solar particle background measurements during encounter may also be used to correct the measurements of other spacecraft borne instruments potentially vulnerable to such radiation.
Solar particle flux measurements, obtained during the cruise phase will, when combined with simultaneous observations made by other spacecraft at different heliographic longitudes, provide information concerning solar particle propagation in the corona and in interplanetary space. 相似文献
We describe the results of determining the mass of the International Space Station using the data of MAMS accelerometer taken during correction of the station orbit on August 20, 2004. The correction was made by approach and attitude control engines (ACE) of the Progress transporting spacecraft. The engines were preliminary calibrated in an autonomous flight using the onboard device for measuring apparent velocity increment. The method of calibration is described and its results are presented. The error in station mass determination is about 1%. The same data of MAMS and similar data obtained during the orbit correction on August 26, 2004 were used for the analysis of high-frequency vibrations of the station mainframe caused by operation of the ACE of Progress. Natural frequencies of the ACE are determined. They lie in the frequency band 0.024–0.11 Hz. ACE operation is demonstrated to result in a substantial increase of microaccelerations onboard the station in the frequency range 0–1 Hz. The frequencies are indicated at which disturbances increase by more than an order of magnitude. The study described was carried out as a part of the Tensor technological experiment. 相似文献
In [1] expressions were constructed for the derivatives of all the orders of a planet’s gravitational potential with respect to the rectangular coordinates related to the gravity center of a planet. These expressions are series of spherical functions. The coefficients of the series of first-order derivatives depend on two Stokes constants, whereas the coefficients of next-order derivatives are linear combinations of the coefficients of preceding-order derivatives. In the present paper the derived expressions for the first and second potential derivatives are transformed into the form that is most convenient for solving the inverse problem, i.e., evaluating Stokes constants from satellite measurements of these derivatives. Each term of the new series for a derivative depends on a sum of two Stokes constants multiplied by linear combinations of several spherical functions. The new form of the expansions for the potential derivatives makes it possible to calculate Stokes constants by simultaneously applying satellite data either for all three first-order potential derivatives, or for all six second-order derivatives. The constructed series may be applied for modeling the Earth’s gravitational field from the satellite data obtained in the international CHAMP, GRACE, and GOCE missions. 相似文献
Developing systems provide unique opportunities for analyzing the effects of microgravity on animals. Several unusual types of cells as well as various extraordinary cellular behavior patterns characterize the embryos of most animals. Those features have been exploited as test systems for space flight. The data from previous experiments are reviewed, and considerations for the design of future experiments are presented. 相似文献
ABSTRACTTwo experiments examined cue reliance and risk-taking during desktop virtual wayfinding, and how they might be modulated by personality traits and external stressors. Participants navigated a series of virtual buildings and we manipulated the strength of probabilistic cues available to guide turn decisions. Navigators frequently discounted probabilistic cues and instead took risks, particularly when costs were low and potential benefits were high. Risk-taking was predicted by higher sense of direction and lower need for structure. Introducing a time stressor lowered risk-taking, with a higher relative reliance on probability-based information. This was most pronounced in females and those with a high need for structure. Results provide novel evidence that spatial cue reliance is modulated by individual differences and contextual constraints. 相似文献
A novel engine health management (EHM) scheme is introduced. It uses flight-level, instead of thermodynamic, data to cost-effectively augment the onboard EHM redundancy. For a nominal healthy aircraft, fault-sensitive interrelations among flight data are globally modelled inside a flight regime via Constant-Coefficient Pooled Nonlinear AutoRegressive with eXogenous (CCP-NARX) excitation representations. Single or sequential engine faults perturb these interrelations. Statistically evaluating the perturbation-induced effects draws reliable conclusions on the engine?s health. Validation and comparisons with Kalman filter-based alternatives are made throughout the regime under various operational conditions. 相似文献
It is over 30 years since the last human being stood on the lunar surface and this long hiatus in human exploration has been to the detriment of lunar and planetary science. The primary scientific importance of the Moon lies in the record it preserves of the early evolution of a terrestrial planet, and of the near-Earth cosmic environment in the first billion years or so of Solar System history. This record may not be preserved anywhere else; gaining proper access to it will require a human presence. Moreover, while this will primarily be a task for the geosciences, the astronomical and biological sciences would also benefit from a renewed human presence on the Moon, and especially from the establishment of a permanently occupied scientific outpost. 相似文献
An extension is presented to the particle filtering toolbox that enables nonlinear/non-Gaussian filtering to be performed in the presence of out-of-sequence measurements (OOSMs) with arbitrary lag, without the need to adopt linearising approximations in the filter and without the degradation of performance that would occur if the OOSMs were simply discarded. An estimate of the performance of the OOSM particle filter (OOSM-PF) is obtained for bearings-only tracking scenarios with a single target and a small number of sensors. These performance estimates are then compared with the posterior Cramer-Rao lower bound (CRLB) for the state estimate rms error and similar performance estimates obtained from the oosm extended Kalman filter (OOSM-EKF) algorithms recently introduced in the literature. For a mildly nonlinear bearings-only tracking problem the OOSM-PF and OOSM-EKF are shown to achieve broadly similar performance. 相似文献