全文获取类型
收费全文 | 8886篇 |
免费 | 64篇 |
国内免费 | 12篇 |
专业分类
航空 | 4175篇 |
航天技术 | 3052篇 |
综合类 | 31篇 |
航天 | 1704篇 |
出版年
2021年 | 88篇 |
2019年 | 60篇 |
2018年 | 183篇 |
2017年 | 123篇 |
2016年 | 128篇 |
2015年 | 63篇 |
2014年 | 213篇 |
2013年 | 256篇 |
2012年 | 253篇 |
2011年 | 373篇 |
2010年 | 275篇 |
2009年 | 405篇 |
2008年 | 453篇 |
2007年 | 266篇 |
2006年 | 199篇 |
2005年 | 237篇 |
2004年 | 229篇 |
2003年 | 278篇 |
2002年 | 189篇 |
2001年 | 300篇 |
2000年 | 172篇 |
1999年 | 211篇 |
1998年 | 246篇 |
1997年 | 151篇 |
1996年 | 229篇 |
1995年 | 274篇 |
1994年 | 260篇 |
1993年 | 150篇 |
1992年 | 209篇 |
1991年 | 75篇 |
1990年 | 79篇 |
1989年 | 195篇 |
1988年 | 86篇 |
1987年 | 77篇 |
1986年 | 89篇 |
1985年 | 246篇 |
1984年 | 196篇 |
1983年 | 164篇 |
1982年 | 176篇 |
1981年 | 263篇 |
1980年 | 71篇 |
1979年 | 64篇 |
1978年 | 69篇 |
1977年 | 60篇 |
1975年 | 80篇 |
1974年 | 58篇 |
1973年 | 46篇 |
1972年 | 61篇 |
1971年 | 51篇 |
1970年 | 50篇 |
排序方式: 共有8962条查询结果,搜索用时 15 毫秒
651.
M.O. Riazantseva O.V. Khabarova G.N. Zastenker J.D. Richardson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(12):1802-1806
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries. 相似文献
652.
Chien S. Knight R. Stechert A. Sherwood R. Rabideau G. 《Aerospace and Electronic Systems Magazine, IEEE》2009,24(1):23-30
An autonomous spacecraft must balance long-term and short-term considerations. It must perform purposeful activities that ensure long-term science and engineering goals are achieved and ensure that it maintains positive resource margins. This requires planning in advance to avoid a series of shortsighted decisions that can lead to failure. However, it must also respond in a timely fashion to a somewhat dynamic and unpredictable environment. Thus, in terms of high-level, goal-oriented activity, spacecraft plans must often be modified due to fortuitous events such as early completion of observations and setbacks such as failure to acquire a guidestar for a science observation. This describes an integrated planning and execution architecture that supports continuous modification and updating of a current working plan in light of a changing operating context. 相似文献
653.
G. D. Holman M. J. Aschwanden H. Aurass M. Battaglia P. C. Grigis E. P. Kontar W. Liu P. Saint-Hilaire V. V. Zharkova 《Space Science Reviews》2011,159(1-4):107-166
High-energy X-rays and ??-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed. 相似文献
654.
L. Ofman M. Romoli G. Noci G. Poletto J. L. Kohl R. A. Howard C. St. Cyr C. E. Deforest 《Space Science Reviews》1999,87(1-2):287-290
In recent UVCS/SOHO White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness
(pB) in the polar coronal holes at heliocentric distances of 1.9 to 2.45 solar radii. The motivation for the observation is
the 2.5D MHD model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes.
In February 1998 we performed new observations using the UVCS/WLC in the coronal hole and obtained additional data. The new
data corroborate our earlier findings with higher statistical significance. The new longer observations show that the power
spectrum peaks in the 10–12 minute range. These timescales agree with EIT observations of brightness fluctuations in polar
plumes. We performed preliminary LASCO/C2 observations in an effort to further establish the coronal origin of the fluctuations.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
655.
M. P. Danilaev S. A. Mikhailov Yu. E. Pol’skii K. V. Faizullin 《Russian Aeronautics (Iz VUZ)》2012,55(2):208-211
In this paper, we formulated the criteria for evaluating the effectiveness of mixing chambers, needed in obtaining polymeric materials with reproducible properties. The results of comparative analysis of organizing the methods for mixing two multiphase flows of oppositely charged particles are presented. This analysis, carried out using CFD programs, shows that the mixing chamber construction in which the flows being mixed are directed at an angle to each other, and additional gas flow inlets are provided in the lateral wall, is the most efficient. 相似文献
656.
657.
S.A. Demin Y.A. Nefedyev A.O. Andreev N.Y. Demina S.F. Timashev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):639-644
The analysis of turbulent processes in sunspots and pores which are self-organizing long-lived magnetic structures is a complicated and not yet solved problem. The present work focuses on studying such magneto-hydrodynamic (MHD) formations on the basis of flicker-noise spectroscopy using a new method of multi-parametric analysis. The non-stationarity and cross-correlation effects taking place in solar activity dynamics are considered. The calculated maximum values of non-stationarity factor may become precursors of significant restructuring in solar magnetic activity. The introduced cross-correlation functions enable us to judge synchronization effects between the signals of various solar activity indicators registered simultaneously. 相似文献
658.
G. Paschmann M. Boehm H. Höfner R. Frenzel P. Parigger F. Melzner G. Haerendel C. A. Kletzing R. B. Torbert G. Sartori 《Space Science Reviews》1994,70(3-4):447-463
The Electron Beam Instrument (F6) onFreja is the first attempt to apply the electron drift technique in a region of large ambient magnetic fields. The paper describes the operational principles, the technical realization, and the difficulties encountered in the derivation of the electric fields. 相似文献
659.
A new method for finding electromagnetic emitter location 总被引:1,自引:0,他引:1
Deergha Rao K. Reddy D.C. 《IEEE transactions on aerospace and electronic systems》1994,30(4):1081-1085
The position of a source of radiation is often obtained from bearing data, taken over an interval of time, and combining it with navigation data. A new method using total least squares (TLS) has been suggested for the accurate estimation of an emitter location when bearing observation errors are random. Further, an iterative two-stage approach involving TLS and Kalman filtering is developed for accurate estimation of the emitter location when bearing observation errors are an algebraic sum of random and systematic errors. The elegance and efficacy of the proposed methods are illustrated through digital computer simulated examples 相似文献
660.
M.D. Ngobeni M.S. Potgieter 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent. 相似文献