首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   65篇
  国内免费   37篇
航空   316篇
航天技术   29篇
综合类   65篇
航天   129篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   13篇
  2017年   17篇
  2016年   6篇
  2015年   10篇
  2014年   20篇
  2013年   10篇
  2012年   6篇
  2011年   13篇
  2010年   16篇
  2009年   11篇
  2008年   24篇
  2007年   17篇
  2006年   34篇
  2005年   33篇
  2004年   46篇
  2003年   33篇
  2002年   12篇
  2001年   13篇
  2000年   16篇
  1999年   12篇
  1998年   7篇
  1997年   21篇
  1996年   8篇
  1995年   4篇
  1994年   9篇
  1993年   6篇
  1992年   22篇
  1991年   8篇
  1990年   12篇
  1989年   9篇
  1988年   6篇
  1987年   5篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   9篇
  1980年   6篇
  1978年   1篇
排序方式: 共有539条查询结果,搜索用时 46 毫秒
141.
采用一种预旋喷气机匣处理提高离心压气机特定转速范围内的稳定裕度.通过引气加大离心叶轮进口基元级流量降低通道堵塞,并借助回流预旋喷气改变前缘攻角抑制叶背分离是该机匣处理扩稳的主要机理.基于这样的认识,对机匣处理做了几何参数设计研究,发现轴向搭接位置、搭接长度和开槽角度是影响机匣处理性能的3个主要参数.通过几何参数的合理选取,在尽量提高80%设计转速稳定裕度的同时兼顾100%设计转速的效率.压气机部件性能试验验证了该设计方法的有效性,并观测到在低转速时,机匣处理可以同时提高稳定裕度和效率.   相似文献   
142.
 为研究飞行马赫数Maflight=4~7的双燃室碳氢燃料超燃冲压发动机燃烧室的原理和工程参数,进行了直连双燃室超声速冷主流和亚燃室稳焰火炬热流的掺混实验和燃烧实验。将进气道输出的超声速气流的10%流量经亚燃进气道导入亚声速预燃室,先低速地与雾化预燃油掺混并建立稳定的预燃。该预燃气流与二次喷入的主燃油掺混而形成富含吸热分解油气的高温射流,再经一组波瓣掺混器与超声速主流在下游流向涡中深入掺混/燃烧,扩大燃区厚度而趋于深入超声流层,以期实现稳定超燃。在总温约为285 K、总压为1.5×106 Pa和1.0×1.06 Pa,燃烧室进口马赫数Mainlet=2.5的来流下,对3种不同结构参数的预燃室和一种超燃室,进行了冷态流场和预燃/主燃的喷油/燃烧实验。实验与计算结果表明,冷/热态实验中整个超燃室保持了超声速流动,尽管斜激波系存在一些变化。利用存在的4种旋涡掺混现象,增强超/亚声速流之间的掺混。当采用三波系进气道和较小容积热强度的大体积预燃室和流向涡掺混器,可以形成稳定的高温富油火炬,成为超燃室稳定点火源。在超燃室下层流层的原无预热冷态来流的亚声速和低超声速区域中出现火焰,且其并不破坏超燃室上层的高超声速未燃流动。  相似文献   
143.
一种控制气流分离的无源微脉冲射流技术研究   总被引:2,自引:0,他引:2  
基于压气机在大负荷下发生气流分离的流动特征提出了一种无源引气微脉冲射流控制的概念,并对其核心的脉冲射流器进行了特性实验分析,结果表明脉冲射流器能产生明显的脉冲射流且射流频率无级可调.结合无源脉冲射流控制方式建立了一套仿叶栅通道实验模型,得到了无流动控制时通道内稳态及动态压力特性,在设计状态下通道内分离涡主频为266 Hz.对该分离流场进行了脉冲射流控制通道内气流分离的实验研究,实验测量了频率从60 Hz到600Hz的微脉冲射流对分离流的控制效果.实验结果表明:从通道总压损失减小的效果来看,当脉冲射流频率接近分离涡主频时控制效果最为明显.此时通道内占主导地位的分离涡的周期性特性得到了明显的改善,其他频率的旋涡对流场的影响程度在脉冲射流的作用下被削弱,流场结构较无控、定常射流控制及其他脉冲射流频率状态更为有序.  相似文献   
144.
于海滨  邓阳  夏晨  傅鑫  黄国平 《航空动力学报》2013,28(11):2517-2525
针对某微型涡轮发动机(MTE)原理样机的直径为78.4mm的微型轴流涡轮,采用数值模拟手段研究了叶尖间隙泄漏对该厘米级高亚声微型轴流涡轮流场结构及涡轮性能的影响.结果表明:微型轴流涡轮相对叶尖间隙尺寸在3.1%~4.6%,明显高于常规轴流涡轮;微型轴流涡轮叶尖间隙泄漏涡影响范围较常规轴流涡轮扩大(至叶中高度),泄漏损失占涡轮级总损失的35%,也较常规轴流涡轮明显增大.研究获得了间隙尺寸对该厘米级高亚声微型轴流涡轮性能的影响规律,叶尖相对间隙尺寸每增加1%叶高,效率最快下降1.9%,其变化幅度较常规轴流涡轮更为明显.最后,根据工程安装的限制(离心力变形及热变形、轴承游隙、加工装配误差等),确定了一个较优的叶尖间隙(0.4mm),通过数值模拟获得了在该间隙下的涡轮性能参数:落压比为2.12,效率为0.87,流量为0.35kg/s.   相似文献   
145.
轴向受载的高速球轴承的拟动力学分析   总被引:3,自引:2,他引:3  
罗祝三  吴林丰  孙心德  高向群 《航空动力学报》1996,11(3):257-260,329-330
提出了对仅受轴向载荷的高速球轴承进行拟动力学分析以掌握滚动元件运动特性的方法。首先确定了钢球和套圈的滚动速度以及套圈相对于钢球的滑动速度,建立了各滚动元件的润滑模型,阐述了建立高速球轴承运动特性分析基本方程的一般原理。通过求解这些基本方程可得到高速球轴承中各滚动元件的运动状态、受力情况、弹流油膜厚度和疲劳寿命,从而可确定高速球轴承不打滑的最小轴向力。  相似文献   
146.
本文指出在进行叶片可靠性试验时,不仅要考虑可靠度指标要求,还必须综合考虑置信度、可靠度,小样特性和模拟试验技术等等因素。从这一观点出发,本文提出了一种较合理的确定叶片疲劳寿命的可靠性试验。这种技术也适用于其它零件的疲劳寿命试验。  相似文献   
147.
 <正> 1。引言 局部应力应变法是目前预测结构裂纹起始寿命的一种行之有效的方法。根据局部应力应变法的原理,可以用计算的方法来预测构件裂纹起始寿命。在计算中,从载荷谱得到局部应变谱,可利用有限元法分析结构的局部应力应变响应。当然还可利用半经验公式(如Neuber法等)。在计算中若考虑材料的记忆特性和循环σ-ε曲线,这无疑对真实地反映受载构件的局部应力应变响应是有利的。但要做到这一点,用有限元分析所需的机时相当可观,因为它要对整个寿命期间的载荷历程进行分析计算,至少也要针对一个典型谱分析计算。 计算中材料的循环应力应变曲线一般可采用下式  相似文献   
148.
光学车间在冷加工过程中沿用虫胶以保护抛光面。虫胶乙醇溶液酸度较大,PH值在1~5之间。且透水性较大,因此对一些易腐蚀玻璃,特别是碱金属氧化物含最高的玻璃如重冕玻璃ZK_(11)等不适用。其腐蚀的情况甚至比不涂虫胶膜的白玻璃还要严重。又如材料为ZF_6的棱镜,在加工过程中因放置了2、3个小时,用虫胶保护,加工完毕后,出现了腐蚀点。但虫胶亦有其优点,干燥较快,在光学车间已习惯使用,故对虫胶应进一步了解,以便改进,使之仍能使用。  相似文献   
149.
离心压气机自循环机匣处理扩稳机理分析   总被引:1,自引:0,他引:1  
康剑雄  黄国平  朱俊强  温殿忠 《航空学报》2014,35(12):3264-3272
自循环机匣处理能大幅提高离心压气机的稳定工作裕度,其回流的抽吸和二次注入具有明显的宏观流动特征。将主流按与二次注入流是否发生掺混分为掺混主流和无掺混主流两股流体,并将离心叶轮按导风轮和工作轮两个压缩部件对自循环机匣处理的作用机理分别进行了分析。数值模拟结果表明:回流流量、回流二次注入的预旋角以及二次注入流占用主流道流通面积的大小是自循环机匣处理扩稳的3个重要因素;二次注入流通过直接掺混和挤占流道使主流收缩加速两种方式减小了导风轮的进气攻角;机匣处理同时加大了导风轮和工作轮尖部的流通能力,抑制了导风轮的叶尖分离,改变了导风轮展向的载荷分布,在减小导风轮尖部载荷的同时提高了工作轮叶尖的做功能力,从而延缓了流动失稳的发生。  相似文献   
150.
针对高温叶片气热多学科优化设计问题中设计变量过多造成的维数灾难问题,提出了基于数据挖掘技术的显著变量识别方法。采用显著变量识别方法剔除了对高温叶片Mark II气热性能影响小的设计变量,使设计变量个数从36个减少为15个。通过耦合共轭换热分析方法、三维叶片及冷却系统参数化方法以及自适应多目标差分进化算法,建立了高温叶片多学科多目标设计优化系统。基于显著变量识别方法获得的设计变量,完成了Mark II型叶片的气热性能多学科设计优化。优化获得了9个Pareto解,典型Pareto解的气热分析结果表明,优化后叶片的气热性能明显优于原始叶片,验证了基于数据挖掘技术的高温叶片多学科设计方法的有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号