首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1544篇
  免费   202篇
  国内免费   351篇
航空   875篇
航天技术   385篇
综合类   428篇
航天   409篇
  2023年   7篇
  2022年   20篇
  2021年   22篇
  2020年   27篇
  2019年   14篇
  2018年   16篇
  2017年   24篇
  2016年   30篇
  2015年   54篇
  2014年   80篇
  2013年   72篇
  2012年   72篇
  2011年   92篇
  2010年   99篇
  2009年   105篇
  2008年   102篇
  2007年   87篇
  2006年   90篇
  2005年   72篇
  2004年   35篇
  2003年   58篇
  2002年   59篇
  2001年   58篇
  2000年   48篇
  1999年   79篇
  1998年   92篇
  1997年   102篇
  1996年   73篇
  1995年   51篇
  1994年   41篇
  1993年   62篇
  1992年   47篇
  1991年   52篇
  1990年   39篇
  1989年   33篇
  1988年   24篇
  1987年   21篇
  1986年   17篇
  1985年   7篇
  1984年   6篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1965年   1篇
  1900年   2篇
排序方式: 共有2097条查询结果,搜索用时 15 毫秒
201.
针对高质量的等高线高速加工要求,设计并实现了数控加工中、根据刀位面及其Zmap模型计算等高线刀具轨迹的原理和算法.该算法充分考虑了刀位面Zmap模型的特点,能确保刀具轨迹始终处于顺铣状态,从而保证了良好的加工工艺性.算法稳定性好,计算速度快,并已在商品化软件CAXA-ME中成功实现.   相似文献   
202.
绕三角翼流动中的非定常现象研究   总被引:2,自引:0,他引:2  
利用流动显示技术、片光技术及PIV技术,对三角翼面上的各种非定常特性做了研究.分别对涡层中的小涡结构,二次涡同主涡相互作用所引起的二次涡的喷射效应,螺旋破裂扰动的非定常特性,涡破裂点沿轴方向振动的非定常特性,以及完全分离流中的非定常特征进行了较为细致的研究,给出了不同扰动的频率特性.   相似文献   
203.
The increase of balloon applications makes it necessary for a comprehensive understanding of the thermal and dynamic performance of scientific balloons. This paper proposed a novel numerical model to investigate the thermal and dynamic characteristics of scientific balloon in both ascending and floating conditions. The novel model consists of a dynamic model and thermal model, the dynamic model was solved numerically by a computer program developed with Matlab/Simulink to calculate the velocity and trajectory, the thermal model was solved by the Fluent program to find out the balloon film temperature distribution and inner Helium gas velocity and temperature field. These models were verified by comparing the numerical results with experimental data. Then the thermal and dynamic behavior of a scientific balloon in a real environment were simulated and discussed in details.  相似文献   
204.
The purpose of the present study was to analyze and predict the changes in acceleration tolerance of human vertebra as a result of bone loss caused by long-term space flight. A human L3–L4 vertebra FEM model was constructed, in which the cancellous bone was separated, and surrounding ligaments were also taken into account. The simulation results demonstrated that bone loss has more of an effect on the acceleration tolerance in x-direction. The results serve to aid in the creation of new acceleration tolerance standards, ensuring astronauts return home safely after long-term space flight. This study shows that more attention should be focused on the bone degradation of crew members and to create new protective designs for space capsules in the future.  相似文献   
205.
Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.  相似文献   
206.
The full dynamics of spacecraft around an asteroid, in which the spacecraft is considered as a rigid body and the gravitational orbit–attitude coupling is taken into account, is of great value and interest in the precise theories of the motion. The spectral stability of the classical relative equilibria of the full spacecraft dynamics around an asteroid is studied with the method of geometric mechanics. The stability conditions are given explicitly based on the characteristic equation of the linear system matrix. It is found that the linearized system decouples into two entirely independent subsystems, which correspond to the motions within and outside the equatorial plane of the asteroid respectively. The system parameters are divided into three groups that describe the traditional stationary orbit stability, the significance of the orbit–attitude coupling and the mass distribution of the spacecraft respectively. The spectral stability of the relative equilibria is investigated numerically with respect to the three groups of system parameters. The relations between the full spacecraft dynamics and the traditional spacecraft dynamics, as well as the effect of the orbit–attitude coupling, are assessed. We find that when the orbit–attitude coupling is strong, the mass distribution of the spacecraft dominates the stability of the relative equilibria; whereas when the orbit–attitude coupling is weak, both the mass distribution and the traditional stationary orbit stability have significant effects on the stability. We also give a criterion to determine whether the orbit–attitude coupling needs to be considered.  相似文献   
207.
The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m−2 s−1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.  相似文献   
208.
A thorough observability analysis of the Mars entry navigation using radiometric measurements from ground based beacons is performed. This analysis involves the evaluation of the Fisher information matrix which is derived from the maximum likelihood estimation. A series of navigation cases with multiple beacons are investigated, and both range and range-rate measurements are considered. The determinant of Fisher information matrix is used to quantify the observability of navigation system, while the trace of Fisher information matrix is used to determine the lower-bound of estimation errors. For one and two beacon cases, the navigation system is unobservable. However, the eigenvectors of Fisher information matrix give the observable and unobservable component. When three or more beacon measurements are employed, the states of entry vehicle become observable. Some valuable analytic conclusions on the relationship between the geometric configuration of beacons and observability are obtained consequently. Finally, simulation results from two navigation examples indicate that our effort is useful for understanding and assessing the observability of the Mars entry navigation using radiometric measurements.  相似文献   
209.
Pinpoint landing (within 100 m from the target) is essential for future Mars exploration missions. This paper deals with one aspect of the pinpoint landing architecture—the navigation performance improvement during the powered descent phase, and proposes an innovative navigation scheme to obtain the vehicle complete and accurate states. On the basis of dead reckoning relying on the Inertial Measurement Unit, measurements of the Integrated Doppler Radar are adopted to correct the vehicle velocity and altitude. Distance between the vehicle and one Mars Orbiter as well as their line-of-sight relative velocity is measured by a radio sensor, and integrated in the filter to correct the vehicle horizontal position. The innovative navigation system is based on an Extend Kalman Filter. Two observation schemes are developed. One considers measurements of the Integrated Doppler Radar and radio range measurement. Another further considers radio velocity measurement. The performance of the innovative navigation scheme is greatly influenced by the position of the Mars Orbiter with respect to the target. Stochastic analyses are performed to obtain optimal locations of Mars Orbiter. Finally, the innovative navigation scheme performances are assessed through stochastic simulations. Its performance improvements are demonstrated by comparison with the Integrated Doppler Radar only navigation scheme.  相似文献   
210.
KuaFu Mission     
The KuaFu mission-Space Storms, Aurora and Space Weather Explorer-is an "L1+Polar" triple satellite project composed of three spacecraft: KuaFu-A will be located at L1 and have instruments to observe solar EUV and FUV emissions, and white-light Coronal Mass Ejections (CMEs), and to measure radio waves, the local plasma and magnetic field,and high-energy particles. KuaFuB1 and KuaFu- B2 will bein polar orbits chosen to facilitate continuous 24 hours a day observation of the north polar Aurora Oval. The KuaFu mission is designed to observe the complete chain of disturbances from the solar atmosphere to geospace, including solar flares, CMEs, interplanetary clouds, shock waves, and their geo-effects, such as magnetospheric sub-storms and magnetic storms, and auroral activities. The mission may start at the next solar maximum (launch in about 2012), and with an initial mission lifetime of two to three years. KuaFu data will be used for the scientific study of space weather phenomena, and will be used for space weather monitoring and forecast purposes. The overall mission design, instrument complement, and incorporation of recent technologies will target new fundamental science, advance our understanding of the physical processes underlying space weather, and raise the standard of end-to-end monitoring of the Sun-Earth system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号