首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
航空   34篇
航天技术   33篇
航天   22篇
  2021年   2篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   6篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2001年   3篇
  1999年   5篇
  1998年   4篇
  1996年   1篇
  1995年   3篇
  1992年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   7篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
41.
We propose to apply the weighted horizontal magnetic gradient (WGM), introduced in Korsós et al., 2015, for analysing the pre-flare and pre-CME behaviour and evolution of Active Regions (ARs) using the SDO/HMI-Debrecen Data catalogue. To demonstrate the power of investigative capabilities of the WGM method, in terms of flare and CME eruptions, we studied two typical ARs, namely, AR 12158 and AR 12192. The choice of ARs represent canonical cases. AR 12158 produced an X1.6 flare with fast “halo” CME (vlinear = 1267 kms-1) while in AR 12192 there occurred a range of powerful X-class eruptions, i.e. X1.1, X1.6, X3.1, X1.0, X2.0 and X2.0-class energetic flares, interestingly, none with an accompanying CME. The value itself and temporal variation of WGM is found to possess potentially important diagnostic information about the intensity of the expected flare class. Furthermore, we have also estimated the flare onset time from the relationship of duration of converging and diverging motions of the area-weighted barycenters of two subgroups of opposite magnetic polarities. This test turns out not only to provide information about the intensity of the expected flare-class and the flare onset time but may also indicate whether a flare will occur with/without fast CME. We have also found that, in the case when the negative polarity barycenter has moved around and the positive one “remained” at the same coordinates preceding eruption, the flare occurred with fast “halo” CME. Otherwise, when both the negative and the positive polarity barycenters have moved around, the AR produced flares without CME. If these properties found for the movement of the barycenters are generic pre-cursors of CME eruption (or lack of it), identifying them may serve as an excellent pre-condition for refining the forecast of the lift-off of CMEs.  相似文献   
42.
We present a combined analysis of the applications of the weighted horizontal magnetic gradient (denoted as WGM in Korsós et al. (2015)) method and the magnetic helicity tool (Berger and Field, 1984) employed for three active regions (ARs), namely NOAA AR 11261, AR 11283 and AR 11429. We analysed the time series of photospheric data from the Solar Dynamics Observatory taken between August 2011 and March 2012. During this period the three ARs produced a series of flares (eight M- and six X-class) and coronal mass ejections (CMEs). AR 11261 had four M-class flares and one of them was accompanied by a fast CME. AR 11283 had similar activities with two M- and two X-class flares, but only with a slow CME. Finally, AR 11429 was the most powerful of the three ARs as it hosted five compact and large solar flare and CME eruptions. For applying the WGM method we employed the Debrecen sunspot data catalogue, and, for estimating the magnetic helicity at photospheric level we used the Space-weather HMI Active Region Patches (SHARP’s) vector magnetograms from SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager). We followed the evolution of the components of the WGM and the magnetic helicity before the flare and CME occurrences. We found a unique and mutually shared behaviour, called the U-shaped pattern, of the weighted distance component of WGM and of the shearing component of the helicity flux before the flare and CME eruptions. This common pattern is associated with the decreasing-receding phases yet reported only known to be a necessary feature prior to solar flare eruption(s) but found now at the same time in the evolution of the shearing helicity flux. This result leads to the conclusions that (i) the shearing motion of photospheric magnetic field may be a key driver for solar eruption in addition to the flux emerging process, and that (ii) the found decreasing-approaching pattern in the evolution of shearing helicity flux may be another precursor indicator for improving the forecasting of solar eruptions.  相似文献   
43.
44.
Simnett  G. M.  Kunow  H.  Flückiger  E.  Heber  B.  Horbury  T.  Kóta  J.  Lazarus  A.  Roelof  E. C.  Simpson  J. A.  Zhang  M.  Decker  R. B. 《Space Science Reviews》1998,83(1-2):215-258
The corotating particle events give us a unique opportunity to probe the three-dimensional structures of the heliosphere. This is especially true if we have observations over a period of extreme stability of the CIRs, such as existed over the recent solar minimum. We discuss how the observations fit into the context of current heliospheric magnetic field models. The energetic particle signatures of CIRs throughout the regions of the heliosphere covered by the deep-space missions are reviewed. The CIRs accelerate these particles and at the same time modulate both the high energy galactic cosmic rays and the anomalous cosmic rays.  相似文献   
45.
We summarize the theory and modeling efforts for the STEREO mission, which will be used to interpret the data of both the remote-sensing (SECCHI, SWAVES) and in-situ instruments (IMPACT, PLASTIC). The modeling includes the coronal plasma, in both open and closed magnetic structures, and the solar wind and its expansion outwards from the Sun, which defines the heliosphere. Particular emphasis is given to modeling of dynamic phenomena associated with the initiation and propagation of coronal mass ejections (CMEs). The modeling of the CME initiation includes magnetic shearing, kink instability, filament eruption, and magnetic reconnection in the flaring lower corona. The modeling of CME propagation entails interplanetary shocks, interplanetary particle beams, solar energetic particles (SEPs), geoeffective connections, and space weather. This review describes mostly existing models of groups that have committed their work to the STEREO mission, but is by no means exhaustive or comprehensive regarding alternative theoretical approaches.  相似文献   
46.
CIRs produce clearly visible recurrent modulation in the intensity of cosmic rays and anomalous components, but are not principally responsible for determining the overall global level of modulation. However, the localized variations imposed by CIRs in the parameters for propagation of energetic particles through the solar wind provide useful diagnostics for testing models of the propagation against observations. A principal result from Ulysses observations of CIR-induced variations is that the variations persist to very high latitudes, well beyond the range where CIRs are observed. This has driven theoretical models to provide for enhanced latitude transport of energetic particles. On the other hand, observations of Jovian electron intensities vs. latitude do not support enhanced latitude transport. This chapter contains a summary of the interaction between observations and models for the effects of CIRs, and its impact on the understanding of the physics of modulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
47.
Highly efficient low-thrust propulsion is increasingly applied beyond commercial use, also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another recent development is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities.Just over ten years ago, the DLR-ESTEC Gossamer Roadmap to Solar Sailing was set up to guide technology developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration and applications missions: small spacecraft solar sails designed for carefree handling and equipped with carried application modules.Soon, in three dedicated Gossamer Roadmap Science Working Groups it initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring, Solar Polar Orbiter (SPO) delivery to very high inclination heliocentric orbit, and multiple Near-Earth Asteroid (NEA) rendezvous (MNR). Together, they demonstrate the capability of near-term solar sails to achieve at least in the inner solar system almost any kind of heliocentric orbit within 10 years, from the Earth-co-orbital to the extremely inclined, eccentric and even retrograde. Noted as part of the MNR study, sail-propelled head-on retrograde kinetic impactors (RKI) go to this extreme to achieve the highest possible specific kinetic energy for the deflection of hazardous asteroids.At DLR, the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)2, i.e., 20 m by 20 m square solar sail at DLR Cologne in 1999 was revitalized and directed towards a 3-step small spacecraft development line from as-soon-as-possible sail deployment demonstration (Gossamer-1) via in-flight evaluation of sail attitude control actuators (Gossamer-2) to an envisaged proving-the-principle flight in the Earth-Moon system (Gossamer-3). First, it turned the concept of solar sail deployment on its head by introducing four separable Boom Sail Deployment Units (BSDU) to be discarded after deployment, enabling lightweight 3-axis stabilized sailcraft. By 2015, this effort culminated in the ground-qualified technology of the DLR Gossamer-1 deployment demonstrator Engineering Qualification Model (EQM). For mission types using separable payloads, such as SPO, MNR and RKI, design concepts can be derived from the BSDU characteristic of DLR Gossamer solar sail technology which share elements with the separation systems of asteroid nanolanders like MASCOT. These nano-spacecraft are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.Like any roadmap, this one contained much more than the planned route from departure to destination and the much shorter distance actually travelled. It is full of lanes, narrow and wide, detours and shortcuts, options and decision branches. Some became the path taken on which we previously reported. More were explored along the originally planned path or as new sidings in search of better options when circumstance changed and the project had to take another turn. But none were dead ends, they just faced the inevitable changes when roadmaps face realities and they were no longer part of the road ahead. To us, they were valuable lessons learned or options up our sleeves. But for future sailors they may be on their road ahead.  相似文献   
48.
Hydrodynamic Ram (HRAM) is a phenomenon that occurs when a high-kinetic energy object penetrates a fluid-filled container. The projectile transfers its momentum and kinetic energy through the fluid to the surrounding structure, increasing the risk of catastrophic failure and excessive structural damage. This is of particular concern in the design of wing fuel tanks for aircraft since it has been identified as one of the important factors in aircraft vulnerability. Usually the HRAM phenomenon is analyzed considering completely filled tanks, but its effect on partially filled containers should also be taken into account due to the fact that tanks use to be impacted under these conditions. In the present paper, the commercial finite element code LS-DYNA has been used to simulate an HRAM event created by a steel spherical projectile impacting a partially water-filled aluminium square tube. The ALE formulation is employed to reproduce the event. Experimental tests which indicate the pressure at different points of the fluid, displacement of the walls and cavity evolution for different impact velocities, are compared with the numerical results in order to assess the validity and accuracy of the ALE technique in reproducing such a complex phenomenon.  相似文献   
49.
The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5?m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2?m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5?g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260?g kg(-1)) and perchlorate (41.13?μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14?μg g(-1)) or formate (76.06?μg g(-1)) as electron donors, and sulfate (15875?μg g(-1)), nitrate (13490?μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.  相似文献   
50.
Mars Science Laboratory Mission and Science Investigation   总被引:5,自引:0,他引:5  
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号