排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
S.V. Vadawale M. Shanmugam Y.B. Acharya A.R. Patel S.K. Goyal B. Shah A.K. Hait A. Patinge D. Subrahmanyam 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The remote X-ray fluorescence spectroscopy is a powerful technique to investigate the elemental abundances in the atmosphere-less planetary bodies. The experiment involves measuring spectra of fluorescent X-rays from lunar surface using a low energy X-ray detector onboard an orbiting satellite. Since the flux of fluorescent X-ray lines critically depend on the flux and spectrum of the incident solar X-rays, it is essential to have simultaneous and accurate measurement of X-ray from both Moon and Sun. In the context of Moon, this technique has been employed since early days of space exploration to determine elemental composition of lunar surface. However, so far it has not been possible to exploit it to its full potential due to various reasons. Therefore it is planned to continue the remote X-ray fluorescence spectroscopy experiment on-board Chandrayaan-2 which includes both lunar X-ray observations and solar X-ray observations as two separate payloads. The lunar X-ray observations will be carried out by Chandra Large Area Soft x-ray Spectrometer (CLASS) experiment; whereas the solar X-ray observations will be carried out by a separate payload, Solar X-ray Monitor (XSM). Here we present the overall design of the XSM instrument, the present development status as well as preliminary results of the laboratory model testing. XSM instrument will have two packages namely – XSM sensor package and XSM electronics package. XSM will accurately measure spectrum of Solar X-rays in the energy range of 1–15 keV with energy resolution ∼200 eV @ 5.9 keV. This will be achieved by using state-of-the-art Silicon Drift Detector (SDD), which has a unique capability of maintaining high energy resolution at very high incident count rate expected from Solar X-rays. XSM onboard Chandrayaan-2 will be the first experiment to use such detector for Solar X-ray monitoring. 相似文献
12.
NASA is moving into an era of Increasing spacecraft autonomy. However, before autonomy can be routinely utilized, we must develop techniques for providing assurance that the system will perform correctly in flight. We describe why autonomous systems require advanced verification techniques, and offer some management and technical techniques for addressing the differences. Autonomous goal-driven spacecraft require advances in verification techniques because optimization (e.g., planning and scheduling) algorithms are at the core of much of autonomy. It Is the nature of such algorithms that over much of the input space an intuitively "small" change in the input results in a correspondingly "small" change in the output: This type of response typically leads one to conclude, quite reasonably, that if the two responses are correct, those responses "between" them will probably also be correct. However, there are certain regions in the input space where a "small" change in the input will result in a radically different output: One is not so inclined to conclude that all responses in these transition zones are likely to be correct. We believe, for two reasons, that these transition zones are one place where autonomous systems are likely to fail. First, boundary conditions, often a rich source of faults, are highly exercised in the transition zones, and so increase the likelihood of faults. Second, within the transition zone the algorithm outputs are likely to appear unusual, and, since the outputs of the algorithm become inputs to the remainder of the system, the whole system is probably pushed outside of its nominal usage profile: historically shown to be another good source of faults. We close with a discussion of risk management. Autonomous systems have many well-known management risk factors. Risk management and quality concerns must be pervasive, throughout all team members and the whole life-cycle of the project. 相似文献
13.
The dispersion effects that are produced when wideband linear frequency modulation (FM) signals are transmitted through a circular phased array are considered for both one-way and two-way transmissions through the array. The distortions resulting at the output of a matched fi'lter which is matched to the undistorted linear FM signal are studied. These distortions are 1) loss in peak pulse amplitude, 2) widening of the pulse, and 3) reduction in sidelobe level. 相似文献
14.
M. Shanmugam S.V.S. Murty Y.B. Acharya S.K. Goyal Arpit R. Patel Bhumi Shah A.K. Hait Aditya Patinge D. Subrahmanyam 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Alpha Particle X-ray Spectrometer (APXS) payload configuration for Chandrayaan-2 rover has been completed recently and fabrication of mechanical assembly, PCB layout design and fabrication are in progress. Here we present the design and performance evaluation of various subsystems developed for APXS payload. The low energy threshold of <1 keV and the energy resolution of ∼150 eV at 5.9 keV, for the Silicon Drift Detector (SDD), as measured from the developed APXS electronics is comparable to the standard spectrometers available off-the-shelf. We have also carried out experiments for measuring fluorescent X-ray spectrum from various standard samples from the USGS catalog irradiated by the laboratory X-ray source 241Am with 1 mCi activity. It is shown that intensities of various characteristic X-ray lines are well correlated with the respective elemental concentrations. 相似文献
15.
Sergey Verlinski ;Nimitt Patel ;Tyler Arsenault ;Philip Yuya ;Pier Marzocca 《南京航空航天大学学报(英文版)》2014,(2):169-174
Experimental investigations and associated methods are provided to characterize the mechanical properties of a lithium-ion battery accounting for operating temperature variation and thermal effects. Material properties for LiFeP04 cathode and anode samples taken from an off-the-shelf battery are evaluated in new and fatigued (subjec- ted to charging and discharging cycles) conditions. 相似文献
16.
N.C. Patel S.P. Karia K.N. Pathak 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(6):1860-1881
This paper investigated the performance of the latest International Reference Ionosphere model (IRI-2016) over that of IRI-2012 in predicting total electron content (TEC) at three different stations in the Indian region. The data used were Global Positioning System (GPS) data collected during the ascending phase of solar cycle 24 over three low-latitude stations in India namely; Bangalore (13.02°N Geographic latitude, 77.57°E Geographic longitude), Hyderabad (17.25°N Geographic latitude, 78.30°E Geographic longitude) and Surat (21.16°N Geographic latitude, 72.78°E Geographic longitude). Monthly, the seasonal and annual variability of GPS-TEC have been compared with those derived from International Reference Ionosphere IRI-2016 and IRI-2012 with two different options of topside electron density: NeQuick and IRI01-corr. It is observed that both versions of IRI (i.e., IRI-2012 and IRI-2016) predict the GPS-TEC with some deviations, the latest version of IRI (IRI-2016) predicted the TEC similar to those predicted by IRI-2012 for all the seasons at all stations except for morning hours (0500 LT to 1000?LT). This shows that the effect of the updated version is seen only during morning hours and also that there is no change in TEC values by IRI-2016 from those predicted by IRI-2012 for the rest of the time of the day in the Indian low latitude region. The semiannual variations in the daytime maximum values of TEC are clearly observed from both GPS and model-derived TEC values with two peaks around March-April and September-October months of each year. Further, the Correlation of TEC derived by IRI-2016 and IRI-2012 with EUV and F10.7 shows similar results. This shows that the solar input to the IRI-2016 is similar to IRI 2012. There is no significant difference observed in TEC, bottom-side thickness (B0) and shape (B1) parameter predictions by both the versions of the IRI model. However, a clear improvement is visible in hmF2 and NmF2 predictions by IRI-2016 to that by IRI-2012. The SHU-2015 option of the IRI-2016 gives a better prediction of NmF2 for all the months at low latitude station Ahmedabad compare to AMTB 2013. 相似文献
17.
Edwards Christopher S. Christensen Philip R. Mehall Greg L. Anwar Saadat Tunaiji Eman Al Badri Khalid Bowles Heather Chase Stillman Farkas Zoltan Fisher Tara Janiczek John Kubik Ian Harris-Laurila Kelly Holmes Andrew Lazbin Igor Madril Edgar McAdam Mark Miner Mark O’Donnell William Ortiz Carlos Pelham Daniel Patel Mehul Powell Kathryn Shamordola Ken Tourville Tom Smith Michael D. Smith Nathan Woodward Rob Weintraub Aaron Reed Heather Pilinski Emily B. 《Space Science Reviews》2021,217(7):1-37
Space Science Reviews - Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are... 相似文献
18.
The paper proposes the use of solar radiation pressure for satellite attitude control in elliptic orbits based on variable structure control. The system comprises of a satellite with two-oppositely placed solar flaps. Sliding mode control and terminal sliding mode control techniques have been adopted to develop nonlinear control laws for suitably rotating the control solar flaps to neutralize the adverse effect of eccentricity normally responsible for a considerable deterioration in the attitude control performance. The detailed numerical simulation of the governing nonlinear equation of the motion including the effects of various system parameters on the controller performance, establishes the feasibility of the proposed control strategy. The proposed controller is found to be robust against parameter uncertainties and external disturbances and thereby, the control strategy presented in the paper may be applicable to future satellite missions. 相似文献
19.
Paul R. Mahaffy Mehdi Benna Todd King Daniel N. Harpold Robert Arvey Michael Barciniak Mirl Bendt Daniel Carrigan Therese Errigo Vincent Holmes Christopher S. Johnson James Kellogg Patrick Kimvilakani Matthew Lefavor Jerome Hengemihle Ferzan Jaeger Eric Lyness John Maurer Anthony Melak Felix Noreiga Marvin Noriega Kiran Patel Benito Prats Eric Raaen Florence Tan Edwin Weidner Cynthia Gundersen Steven Battel Bruce P. Block Ken Arnett Ryan Miller Curt Cooper Charles Edmonson J. Thomas Nolan 《Space Science Reviews》2015,196(1-4):49-77
20.
R.P. Patel A.K. Singh S. Singh R. Singh K. Singh R.P. Singh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1699-1703
VLF emissions such as hiss, chorus, pulsing hiss, triggered emissions observed at Varanasi (geom. lat. = 14° 55′ N, long. = 153° 55′ E) are reported. An attempt has been made to explain the dynamic spectra in terms of the generation mechanism and propagation through the inhomogeneous magnetoplasma. It is noted that the reported events have propagated along different L-values in the magnetosphere, although they have been recorded at the same station. The ULF waves propagating along geomagnetic field lines modulate the growth rate of VLF waves, which results in the pulsation of VLF hiss intensity. The pulsating growth rate has been computed. 相似文献