首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5728篇
  免费   525篇
  国内免费   418篇
航空   3164篇
航天技术   1810篇
综合类   389篇
航天   1308篇
  2023年   46篇
  2022年   108篇
  2021年   142篇
  2020年   125篇
  2019年   65篇
  2018年   125篇
  2017年   137篇
  2016年   107篇
  2015年   124篇
  2014年   202篇
  2013年   225篇
  2012年   220篇
  2011年   320篇
  2010年   294篇
  2009年   295篇
  2008年   355篇
  2007年   257篇
  2006年   233篇
  2005年   196篇
  2004年   139篇
  2003年   193篇
  2002年   185篇
  2001年   180篇
  2000年   151篇
  1999年   166篇
  1998年   159篇
  1997年   145篇
  1996年   137篇
  1995年   139篇
  1994年   150篇
  1993年   100篇
  1992年   87篇
  1991年   64篇
  1990年   61篇
  1989年   87篇
  1988年   51篇
  1987年   38篇
  1986年   41篇
  1985年   117篇
  1984年   79篇
  1983年   80篇
  1982年   61篇
  1981年   103篇
  1980年   25篇
  1979年   27篇
  1978年   33篇
  1977年   25篇
  1975年   39篇
  1972年   33篇
  1971年   25篇
排序方式: 共有6671条查询结果,搜索用时 31 毫秒
91.
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.  相似文献   
92.
In 1996 the NASA Advisory Council asked for a comprehensive look at future launch projections out to the year 2030 and beyond. In response to this request NASA sponsored a study at The Aerospace Corporation to develop long-range space transportation models for future commercial and government applications, and to analyze the design considerations and desired characteristics for future space transportation systems. Follow-ons to present space missions as well as a wide array of potential new space applications are considered in the study. This paper summarizes the space transportation system characteristics required to enable various classes of future missions. High reliability and the ability to achieve high flight rates per vehicle are shown to be key attributes for achieving more economical launch systems. Technical, economic and policy implications are also discussed.  相似文献   
93.
The data of measuring the plasma density in the topside ionosphere for the South-Atlantic geomagnetic anomaly region are presented. It is shown that irregular plasma structures with a wide spectrum of irregularity scale (including large-scale structures with a dimension of order of some hundred kilometers) can be generated in the fields of electrostatic turbulence in inhomogeneous plasma.  相似文献   
94.
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.  相似文献   
95.
Over the past several hundred years, many ideas have been expressed as to how human beings might communicate with extraterrestrials. These ideas have been put forth by experts from a diverse range of fields including physical scientists, mathematicians, behavioral scientists, philosophers and creative writers who have widely differing views on how to express ourselves coherently with civilizations from other worlds.This paper will look at some of these differing viewpoints and stress the need for an inter-disciplinary approach to the challenges of sending and, perhaps most important, receiving messages. Could we decipher a message if we got one? Who is doing the listening and what advantages could an inter-disciplinary approach bring to these efforts? What are some inter-disciplinary approaches to sending messages to extraterrestrials?  相似文献   
96.
The mission's success fully depends on the Payload Operations conducted during the space flight. The Ground Team has to be trained to assist the Space Crew, to replan the cosmonaut's activities when contingengies occurr onboard and to change or cancel Payload activities when required. In order to act efficiently during the mission, the Ground Team must be prepared in advance of the flight and able to operate special tools for tracking the mission's progress, anticipating problems and taking decisions in realtime.

This document sets out the approach for conducting such a preparation for Ground Operation. It will be focused on the Altaïr mission performed in July 1993 onboard the Russian Mir space station.  相似文献   

97.
态势评估领域知识的表示方法研究   总被引:1,自引:0,他引:1  
从分析态势评估专家系统的结构出发,研究战场态势评估知识库的构建,进而对态势评估的领域知识进行归纳,并通过示例探讨对态势评估领域知识的表示方法,同时把可信度方法引入态势评估不确定性知识的表示,给出了复合条件可信度的计算方法。  相似文献   
98.
本文以高职教育的现况、特色为依据,分析了高职教育改革中存在的问题,并从专业培养目标的定位、课程体系与教学方法、实验实习条件、师资能力与结构、教学内容与教材建设等方面分析了目前高职教育中影响高职教育质量的原因,并提出了改革的基本思路和方法。  相似文献   
99.
We consider a relationship between the difference in spectral indices of the spectra of single hadrons and all hadrons (snglh) and the difference in the indices of the spectra of galactic cosmic ray (GCR) protons and nuclei. It is demonstrated that at the mountain level the ratio (pZ)/(snglh) is always larger than unity, if (snglh) > 0.1. From the experimental value snglh = 0.4 ± 0.05 we derive that, in the vicinity of E = 10 TeV, pZ 0.49 ± 0.06 , i.e., p 3.09 ± 0.06.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 2, 2005, pp. 83–87.Original Russian Text Copyright © 2005 by Grigorov, Tolstaya.  相似文献   
100.
Blood pressure at 30-sec intervals, heart rate, and percentage increase in leg volume continuously were recorded during a 25-min protocol in the M092 Inflight Lower Body Negative Pressure (LBNP) experiment carried out in the first manned Skylab mission. These data were collected during six tests on each crewman over a 5-month preflight period. The protocol consisted of a 5-min resting control period, 1 min at -8, 1 min at -16, 3 min at -30, 5 min at -40, and 5 min at -50 mm Hg LBNP. A 5-min recovery period followed. Inflight tests were performed at approximately 3-day intervals through the 28-day mission. Individual variations in cardiovascular responses to LBNP during the preflight period continued to be demonstrated in the inflight tests. Measurements of the calf indicated that a large volume of fluid was shifted out of the legs early in the flight and that a slower decrease in leg volume, presumably due to loss of muscle tissue, continued throughout the flight. Resting heart rates tended to be low early in the flight and to increase slightly as the flight progressed. Resting blood pressure varied but usually was characterized by slightly elevated systolic blood pressure, lower diastolic pressure, and higher pulse pressures than during preflight examinations. During LBNP inflight a much greater increase in leg volume occurred than in preflight tests. Large increases occurred even at the smallest levels of negative pressure, suggesting that the veins of the legs were relatively empty at the beginning of the LBNP. The greater volume of blood pooled in the legs was associated with greater increases of heart rate and diastolic pressure and larger falls of systolic and pulse pressure than seen in preflight tests. The LBNP protocol represented a greater stress inflight, and on three occasions it was necessary to stop the test early because of impending syncopal reactions. LBNP responses inflight appeared to predict the degree of postflight orthostatic intolerance. Postflight responses to LBNP during the first 48 hours were characterized by marked elevations of heart rate and instability of blood pressure. In addition, systolic and diastolic pressures were typically elevated considerably both at rest and also during stress. The time required for cardiovascular responses to return to preflight levels was much slower than in the case of Apollo crewmen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号