首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1388篇
  免费   205篇
  国内免费   83篇
航空   880篇
航天技术   189篇
综合类   218篇
航天   389篇
  2024年   10篇
  2023年   49篇
  2022年   47篇
  2021年   50篇
  2020年   39篇
  2019年   44篇
  2018年   35篇
  2017年   102篇
  2016年   72篇
  2015年   39篇
  2014年   80篇
  2013年   34篇
  2012年   35篇
  2011年   43篇
  2010年   58篇
  2009年   47篇
  2008年   45篇
  2007年   59篇
  2006年   67篇
  2005年   62篇
  2004年   50篇
  2003年   67篇
  2002年   37篇
  2001年   41篇
  2000年   43篇
  1999年   40篇
  1998年   42篇
  1997年   34篇
  1996年   33篇
  1995年   31篇
  1994年   29篇
  1993年   30篇
  1992年   27篇
  1991年   29篇
  1990年   21篇
  1989年   28篇
  1988年   7篇
  1987年   11篇
  1986年   14篇
  1985年   10篇
  1984年   6篇
  1983年   10篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1965年   1篇
排序方式: 共有1676条查询结果,搜索用时 750 毫秒
101.
涡轮试验是检验涡轮性能是否达标的重要过程。基于某全尺寸涡轮试验器、现有涡轮试验方法和试验规范,通过对试验器进行适当设备改造,结合试验涡轮的进出口压力、温度、流量和功率等参数的耦合关系,形成针对大涵道比涡扇发动机多级低压涡轮性能试验状态评估、过程控制和数据分析方法,并通过国内某型大涵道比涡扇发动机多级低压涡轮试验进行验证。试验结果表明:基于试验参数耦合关系的试验状态评估、过程控制和数据分析方法有效,填补了国内大涵道比涡扇发动机多级低压涡轮试验方法和试验数据的空白,同时,该型发动机低压涡轮的效率达到设计指标,处于国内先进水平,所述方法可为国内后续多级低压涡轮试验提供参考。  相似文献   
102.
比例与非比例加载下30CrMnSiA钢多轴高周疲劳失效分析   总被引:1,自引:0,他引:1  
为了分析比例与非比例加载下,30CrMnSiA钢的多轴高周疲劳的失效规律。通过对30CrMnSiA钢材料开展比例与非比例(δ=90°)加载下的多轴高周疲劳试验,研究了应力幅比和相位差对疲劳寿命、断口特征及裂纹起裂角度的影响。试验结果表明,对于比例与非比例加载,随着应力幅比的增大,多轴疲劳寿命逐渐增加。对疲劳断口分析发现,裂纹萌生于试件表面,断口有明显的疲劳源区、扩展区和瞬断区,不同加载路径下的试件断口形式有明显差异。通过对起裂角度的分析发现,应力幅比大于0.25时表面裂纹有明显的第Ⅰ阶段向第Ⅱ阶段的转变,且第Ⅰ阶段沿着接近最大剪应力幅值平面方向扩展,第Ⅱ阶段沿着接近最大正应力平面方向扩展。此外,对典型试件的疲劳断口及表面扩展路径进行了分析,研究表明多轴疲劳试验试件裂纹的特征比值在0.3~0.5之间,且裂纹沿深度方向扩展至300 μm时占总寿命的85%以上。   相似文献   
103.
为了探究硼笼化合物对液固凝胶型高能燃料的点火及燃烧性能的影响,采用高密度碳氢燃料MCRI-1、辅助分散剂胶凝剂和纳米铝粉为原料,制备了系列含铝液固凝胶型高能燃料(简称含铝高能燃料),并考察了含铝高能燃料的组成对其分散稳定性(即凝胶成型效果)的影响。在此基础上,考察了三种硼笼化合物对含铝高能燃料的密度、热值、点火及燃烧性能的影响。结果表明,提高胶凝剂含量或固液质量比(Al/MCRI-1)均可提高含铝高能燃料的分散稳定性。含铝高能燃料的密度和体积热值随着硼笼化合物的添加略有降低,但其质量热值在添加硼笼T和硼笼A后分别增加了11.6%和12.4%。硼笼化合物可将含铝高能燃料的燃温峰值提高21.1%~52.9%,点火延迟缩短44.5%~65.2%。硼笼化合物明显改善了含铝高能燃料的点火及燃烧性能。整体上,硼笼A添加效果最佳,且热解及燃烧可产生较多的气体,一定程度上增强了含铝高能燃料的膨胀做工能力。  相似文献   
104.
为了量化评估冷气掺混对高压涡轮性能的影响,综合分析现有设备能力,采用动量比相似的模拟方法,在2个结构和测试布局相同,但叶片分别为实心叶片和气冷叶片的涡轮上进行对比试验,并借此开展冷气流量、气膜孔位置因素对涡轮性能影响的试验研究。结合试验数据对比分析不同的效率计算方法,确定有效效率为气冷涡轮效率的计算方法。试验结果表明:涡轮性能随冷气流量的增加逐渐恶化,作功能力逐渐下降,效率降低幅度呈先减小后增大趋势;从前缘至尾缘,冷气越靠后进入主流道,气体能量利用率越低,涡轮效率越低。  相似文献   
105.
在航空航天系统中,已有许多可靠性参数来描述产品的可靠性特性,但大多数都是基于连续时间上的 连续型可靠性参数,而在离散时间上有定义的离散型可靠性参数的描述较少,例如离散失效率。为弥补可靠性 理论在在这方面的缺陷,从离散时间这一角度出发,研究离散型可靠性参数的数学关系。推导离散失效概率与 离散失效率的数学转换公式,利用离散失效率推导计算离散可靠度的数学公式,推导平均失效前工作次数与离 散失效概率的数学转换公式,并进行验证。结果表明:推导出的三个数学转换公式合理,可以用于描述离散型 可靠性参数。  相似文献   
106.
钛基复合材料由于在中高温环境下具有很高的比强度、比模量以及良好的抗疲劳和抗蠕变特性,受到研究者的广泛关注。回顾了国内外该材料的发展历程,详细介绍了连续SiC纤维增强钛基复合材料的研制过程,包括SiC纤维制备、涂层制备、复合材料成型及构件制备等工艺过程。概述了研究团队近年来在连续SiC纤维增强钛基复合材料研究领域开展的工作及取得的进展,包括成功研制了高性能连续SiC纤维并实现小批量试制,设计了适用于不同增强基体合金的界面涂层,研究表明研制的C涂层可使复合材料经1100℃处理后界面涂层保存较好;实现了20~50μm性能优异的钛合金、铝合金、高温镍合金先驱丝的沉积;完成了Ф600mm×160mm尺寸的复合材料环形件及Ф50mm×300mm转动轴部件的试制。最后对该材料未来的发展趋势进行了展望。  相似文献   
107.
在对低温推进剂在轨贮存技术简要概述的基础上,针对推进飞行器的2种构型,提出了3种低温推进剂在轨贮存被动蒸发控制方案,建立了技术方案中复合绝热结构和蒸汽冷却屏的传热分析模型,对不同轨道、不同构型和多个蒸发控制方案的低温贮箱漏热量和蒸发量进行了计算和分析。结果表明,绝热结构隔热性能为0.05 W/(m2·K)时,被动蒸发控制方案可控制液氢贮箱蒸发率为0.4%~1.1%/天;近地轨道低温贮箱的蒸发量明显大于地月转移轨道的蒸发量;蒸汽冷却屏可以明显减小低温贮箱的漏热;随着绝热结构隔热性能的增加,低温贮箱的漏热量减小。  相似文献   
108.
为了获得组织分布均匀且综合性能好的较大改性区,对Mg-Zn-Y-Nd合金厚板进行单面和双面搅拌摩擦加工,并对其组织和性能进行研究。结果表明:经搅拌摩擦加工后合金的微观组织均得到了显著细化,单面和双面搅拌摩擦加工后合金搅拌区的上部、中部和下部样品的平均晶粒尺寸依次分别为4.45μm、5.08μm、5.30μm和3.93μm、3.20μm、3.19μm;相比于均匀化退火态合金和单面搅拌摩擦加工态合金,双面搅拌摩擦加工态合金的组织分布更加均匀和细小,其下层搅拌区的抗拉强度和伸长率最高,分别为283.3 MPa和23.9%,且耐腐蚀性能最好,腐蚀方式由点蚀变为均匀腐蚀。  相似文献   
109.
顾志旭  郑坚  彭威  支建庄 《推进技术》2018,39(2):396-403
为建立复合固体推进剂的损伤本构模型,基于不可逆热力学和叠加原理,通过引入宏观损伤效应张量,推导出一个通过有效应力表征损伤的蠕变型损伤本构方程。假设材料为初始各向同性,进一步引入细观标量损伤效应函数表征材料对称性的改变,进而得到由细观损伤效应函数表征宏观损伤效应张量的一般表达式。通过选取合适的细观损伤效应函数,文中建立的本构方程可以用于表征材料的正交各向异性损伤、横观各向同性损伤和各向同性损伤。最后,基于Schapery粘弹性微裂纹扩展模型,选取相对微裂纹密度为损伤内变量,建立了一个由损伤热力学对偶力表征的幂律型损伤演化方程。数值结果表明,建立的模型能够较好地反映材料损伤的率相关性和温度依赖性,具有良好的预测精度。  相似文献   
110.
环状针刺C/C复合材料的压缩性能及破坏机理   总被引:1,自引:0,他引:1       下载免费PDF全文
以碳纤维针刺毡为预制体,采用CVI致密工艺制作准三维C/C薄壁回转体,具有各向异性的力学性能.本文主要对三个主方向的材料压缩性能及破坏机理进行了研究讨论.结果表明:轴向压缩与环向压缩性能相似具有较高的压缩模量.材料的径向压缩表现为假塑性断裂行为,在材料的断裂面上具有大量纤维及基体碎屑,材料发生剪切破坏及基体压溃破坏.材料的轴向压缩与环向压缩表现为脆性断裂行为,材料主要以分层劈裂方式破坏.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号