首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   1篇
  国内免费   12篇
航空   49篇
航天技术   1篇
综合类   17篇
航天   11篇
  2024年   1篇
  2022年   2篇
  2021年   4篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   2篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
41.
鸟体形状对飞机风挡鸟撞动响应的影响   总被引:3,自引:1,他引:3  
目前,鸟撞动响应分析结果与试验结果不能很好地吻合.造成这个问题的原因有很多,如鸟体和风挡的本构关系、鸟体形状、风挡的破坏准则等.本文重点研究了鸟体形状对动响应的影响.在鸟撞动响应分析中,采用的鸟体形状主要有两大类:(1)圆柱体,(2)两端半球形、中间圆柱形的实体.本文分别采用解耦解法和耦合解法研究了这两种形状对风挡鸟撞动响应的影响,并与试验结果进行了比较.结果表明:用两种形状计算得到的应变曲线的变化趋势与试验结果都基本相符,但当飞机水平与鸟相撞时用第一种形状计算得到的风挡应变值小于用第二种形状计算得到的风挡应变值,用第二种形状计算所得的结果与试验结果更加吻合.  相似文献   
42.
降落伞初始充气阶段数值模拟   总被引:1,自引:2,他引:1  
根据降落伞的结构和其在充气过程中的受力特性,以某平面圆形伞为原型,建立了伞衣初始充气过程中的计算流体力学与结构动力学的耦合模型.首次考虑了充气过程中折叠伞表的张开问题,建立了更接近降落伞物理模型的初始充气阶段伞表质点结构和受力方程.对流场的变化采用了准定常假设,利用simple算法数值模拟求解RNG κ-ε湍流模型下的雷诺平均N-S方程以获得每一状态伞表张开部分与折叠部分交界处质点的压差系数.把数值计算结果和试验结果及经验值比较,得到如下结论:(1)初始充气阶段伞衣外形变化为:整个阶段,伞衣展开部分外形基本保持较光滑的直筒形状,而非喇叭形.与试验结果相比,计算结果较真实地反映了初始充气阶段伞衣外形的变化情况.(2)当无因次充气时间为0.27左右时.初始充气阶段结束,伞衣投影面积随充气时间呈线性变化,计算值与实验值接近.  相似文献   
43.
为研究牵顶伞对主伞充气过程的影响,建立了有无牵顶伞的主伞充气阶段的流固耦合数学模型,对有无牵顶伞时,主伞的整个充气过程进行了数值模拟,并将计算所得的开伞动载与空投试验结果进行对比,以验证数值仿真的可靠性。研究结果表明:(1)有牵顶伞时开伞过程中的平均速度比无牵顶伞时大;(2)有牵顶伞时,收口阻力特征比无牵顶伞时要小约30%。(3)有牵顶伞时,第一峰值的过载呈减少趋势,第二峰值约大了36%;(4)对具有不同阻力特征的牵顶伞的计算结果表明:牵顶伞阻力特征增大,初始充气时间和初始充气距离均减小,但初始充气结束时的速度基本不变,而开伞峰值、收口阻力特征、充满时间和充满距离均变化不大。(5)有牵顶伞时,在初始充气阶段,伞衣不易张开,因而伞衣外形显得更为细长。而在主充气阶段,在解除收口绳之前,由于顶部有牵顶伞的阻力,伞衣张开相对较慢,因而伞衣细长些。当解除收口后,牵顶伞的阻力已经很小,此时,有无牵顶伞的主伞伞衣外形变化几乎相同。  相似文献   
44.
无人机伞回收动力学分析   总被引:2,自引:1,他引:2  
在建立无人机六自由度飞行力学模型和降落伞回收动力学模型的基础上,对无人机的整个回收过程进行仿真分析,并与飞行试验进行了比较。结果表明:本文所采用的方法较为准确地预测了整个减速伞工作阶段中的相关动力学特性。计算结果还包括了无人机与回收系统的相对运动过程,有效地预测了回收过程的危险情况,为无人机控制律和回收系统设计提供了重要参考。  相似文献   
45.
在三排45孔铝合金试验件载荷加重试验基础上,对该模型进行了细致的有限元计算,系统地分析了广布损伤裂纹尖端相互影响因子分布和载荷加重裂纹扩展规律。结果表明:对于两个裂纹参数ai和aj影响的裂纹尖端相互影响因子βi,随着aj的增加而增加,随着ai的增加而减小;对于3个参数ai,aj和ak影响的裂纹尖端相互影响因子βi,随着aj和ak的增加而增加,随着ai的增加而减小;载荷加重后对β没有影响,这是由于有限元模型进行的是线弹性分析。由有限元法、构件疲劳额定系数法和构件细节数效应系数法3种方法计算的载荷1.2倍加重后的裂纹扩展量Δa1.2和原载荷扩展量Δa的比值η,在加载比较小,裂纹比较短时,多裂纹的扩展可以看作独立的裂纹扩展,可以吻合得很好,大约在2左右;但是当加载比较大,裂纹比较长时,裂纹尖端的相互影响因子变大,裂纹的扩展会快速增加,用有限元法可以更好地预测。  相似文献   
46.
降落伞充气过程中伞衣外形及流场变化研究   总被引:2,自引:0,他引:2  
根据降落伞的结构和其在充气过程中的受力特性,以某平面圆形伞为原型,建立了伞衣充气过程中的计算流体力学与结构动力学耦合模型。并采用七孔探针对充满状态的绕流流场进行了定量测量,将该状态的试验结果和计算结果进行对比分析,二者的拓扑结构非常相似,压差系数也相差不大,因此所采用的数学模型是可靠的。在此基础上,对整个充气阶段的流场进行了数值模拟和分析,以详细了解降落伞整个开伞过程中伞衣外形变化及伞衣内外流场的变化情况。研究结果表明:①在初始充气阶段,伞衣展开部分外形基本保持较光滑的直筒形状,而非喇叭形。在主充气阶段:空气首先在伞衣顶部聚集,使伞衣顶部膨胀,然后膨胀部分向伞衣底边扩展,直到伞衣完全张满。②当伞顶孔被气流冲开后,伞衣的结构透气性对流场会产生显著影响。但从内外压力系数的变化来看,透气性对伞衣内滞止压力的影响较小,对伞衣外流场结构的影响较大,从而对伞衣外表面的压力影响较大。③对于此类有伞顶孔的平面圆形伞,当伞衣充气张开后,伞衣尾部出现气流分离,在一个漩涡区内形成两个相反旋转方向的漩涡。且随着伞衣直径扩张,分离区扩大,主流对漩涡区的剪切面积增大,因此漩涡区两个漩涡中外侧的一个漩涡增大,内侧漩涡被挤压至离伞顶更近的区...  相似文献   
47.
在三排45孔铝合金板广布疲劳损伤试验基础上,对模型进行了有限元计算,系统研究了广布损伤裂纹尖端相互影响因子分布和裂纹扩展顺序规律。结果表明:裂纹尖端相互影响因子βi,当受两个裂纹参数ai和aj影响时,其随着aj的增加而增加,随着ai的增加而减小;当受三个参数ai、aj和ak影响时,其随着aj和ak的增加而增加,随着ai的增加而减小。循环数N相等时,模式I扩展最快,模式II最慢,模式III的扩展间于模式I模式II之间,但比较接近模式II,这是由于模式III下孔裂纹比较接近于模型中间位置,受模型边界的影响较小。以上结论表明,在实际工程应用中,多裂纹出现在模型中间要比靠近边界安全。  相似文献   
48.
针对某型直升机适航取证的任务需求,在相应简化和配重基础上,对直升机进行全机柔性体建模。参照WG30整机水上砰击试验的研究方法,通过LS-DYNA中的光滑质点流体动力学( SPH)方法研究直升机在9 m/s垂直速度下水上砰击情况,选取驾驶舱底部、客舱中部、客舱后部三个位置为测量点,得到直升机触水后的整体运动趋势以及直升机底部压强、加速度与底部材料之间的关系;通过不同模型的对比,研究了短翼和气囊对直升机水上砰击的影响。仿真结果与试验结论相符,验证了计算的可靠性,为直升机水上砰击提供了一定的技术支持。  相似文献   
49.
根据细编穿刺复合材料的细观和微观结构,分别建立了纤维束和细编穿刺单胞有限元模型。采用周期性非绝热温度边界条件,计算了纤维束和材料整体的等效热导率。计算结果与经验公式比较,具有高度的一致性。在此基础上,进一步研究了纤维体积分数、基体和纤维热导率对材料热导率的影响。结果表明,随着纤维含量的增加,材料两个方向热导率均有不同程度的下降,且差异逐渐减小,且基体对热导率影响作用较大。文中采用的模型和周期性边界条件与理论预期符合较好,为材料热学和热力耦合问题的分析提供了有用参考。  相似文献   
50.
采用流动控制的超声速内埋物投放特性研究   总被引:1,自引:1,他引:1  
针对马赫数Ma3飞行状态下的内埋物安全投放难题,提出了两种适用于非平坦舱体外形的超声速内埋物投放分离过程的流动控制方法:第一种方法采用了圆棒扰流器,第二种方法采用气帘喷流。为了验证两种不同流动控制方法的效果,引入结构嵌套六自由度动态网格技术和基于k-ω湍流模型的Navier-Stokes方程计算,对包括重力投放、弹射投放、采用圆棒扰流器的重力投放和采用气帘的重力投放等4种不同的投放分离状态进行了动态全过程的计算对比分析。通过对仿真计算结果分析发现,当来流马赫数Ma∞3时,采用流动控制的投放物分离运动特性产生了明显的变化。由投放物下落过程中的俯仰偏航特性可以得出:采用圆棒流动控制有利于安全分离;气帘流动控制具有应用潜力,但采用这种方法需要针对特定的投放条件进行优化,否则可能诱发投放物在俯仰方向的姿态发散。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号