首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   4篇
  国内免费   13篇
航空   34篇
综合类   3篇
航天   5篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  1999年   2篇
排序方式: 共有42条查询结果,搜索用时 218 毫秒
31.
通过低速风洞试验研究了使用双翼布局改善固定翼微型飞行器(MAV)气动性能的问题。首先比较不同平面形状单翼(齐莫曼翼和反齐莫曼翼)与双翼布局的气动特性。在此基础上为了优化低雷诺数范围内的双翼布局,研究不同几何参数对气动特性的影响,包括双翼不同的翼间距和交错位置以及不同的上下翼平面形状,并分析了造成这种气动性能差异可能存在的流场相互作用机理。研究表明,双翼布局能够改善单翼微型飞行器的气动性能,双翼之间的相对几何位置对其气动特性影响很大。通过不同平面形状上翼与下翼组合的比较发现,就最大升力和升阻比而言,上翼为齐莫曼翼、下翼为反齐莫曼翼且上翼位于下翼上游的布局较优。  相似文献   
32.
智能可变形飞行器关键技术发展现状及展望   总被引:1,自引:0,他引:1  
智能可变形飞行器是当前航空航天飞行器研究领域的一个热点,是最有可能带来航空航天技术变革,产生颠覆性影响的领域之一,因此受到国内外的广泛关注。本文首先指出飞行器可变形的需求主要来源于如下几个方面,即:1)未来飞行器的飞行空域、速域不断扩大,固定外形可能无法满足不同飞行工况对飞行器气动和飞行性能的需求;2)单架飞行器实现多个飞行使命和任务,可能需要飞行器在执行不同飞行任务时具有不同的气动外形;3)提升现有飞行器的气动总体性能,要求其在各个飞行阶段,通过调整气动外形,使其始终保持优良的气动和飞行性能。介绍了现代意义上的智能可变形飞行器所包含的"变形"和"智能"两方面的含义,其中"变形"是指不同空间尺度(局部、分布、整体)和时间尺度的连续变形,涵盖的范围很宽。按照变形尺度和实现的功能将其划分为三类,即:局部变形(小变形)、分布式变形(中等尺度变形)、整体式变形(大尺度变形)。按照实现方式将其划分为两类:机械式变形和基于智能材料结构的变形。并指出当前这个领域的所谓"智能"基本都限制在智能材料或结构、智能控制等较为单一的领域,距离理想的智能变形有很大差距。本论文的论述重点放在可变形技术所涉及的基础科学问题和关键技术。第二,从1903年人类第一架依靠柔性变形机翼实现控制的莱特兄弟的带动力飞行器起,到20世纪六七十年代以F14为代表的变后掠翼技术,至近些年来在湾流III飞机上成功实现飞行演示验证的连续变后缘弯度技术,系统地介绍了可变形飞行器的发展历程。第三,分别从可变形飞行器设计所面临的关键技术和可变形飞行器两大基础科学问题及技术瓶颈问题的角度,系统地介绍了可变形飞行器所面临的关键问题和国内外研究进展。从设计的角度看,主要问题在于:智能可变形飞行器需求分析和概念研究,智能可变形飞行器总体和分系统设计技术。从基础科学问题和瓶颈技术的角度看,主要问题在于两个方面,即:可变形飞行器气动、飞行力学和飞行控制,变形结构、驱动与变形控制。第四,针对智能可变形飞行器的内涵、可变形的技术指标、变形材料与结构以及效费分析等几个方面进行了有益的探讨。最后对智能可变形飞行器技术的未来发展进行了展望,指出智能可变形飞行器技术是螺旋式发展的,一方面需要开展广泛系统的基础理论和关键技术探索研究,从基础做起;另一方面需要从工程化的角度梳理可变形飞行器一类或几类较为明确的背景需求,以牵引该领域的有序快速发展。  相似文献   
33.
为准确预测翼型低雷诺数条件下出现的层流分离流动现象,发展了基于结构化拼接网格的大涡模拟方法。控制方程为Favre滤波Naver-Stokes方程,并选用多种亚格子模型。空间离散采用AUSM格式以及高阶WENO格式,时间推进采用显式方法和隐式方法。以SD7003翼型在雷诺数60 000及4°迎角下的层流分离流动为研究对象,对比分析了数值格式、亚格子模型、网格尺度对流场预测结果的影响。数值结果表明:划分的计算网格能够有效解析小尺度流动结构,基于隐式亚格子模型、采用AUSM格式和双时间步推进的大涡模拟方法能够准确预测流动分离、转捩、再附等复杂流动现象,计算得到的平均压强系数与雷诺应力分布与文献数据吻合较好。与转捩模式计算结果对比进一步表明:发展的大涡模拟方法能够准确预测翼型低雷诺数层流分离流动非定常演化过程,为下一步的研究工作建立了有效的数值模拟手段。  相似文献   
34.
采用数值方法对果蝇翼悬停飞行拍动翼问题进行了模拟,介绍了前人生物观察和动态比例模型得来的简化拍动翼运动规律。果蝇翼模型平面形状采用Dickinson动态比例试验采用的形状,计算的无量纲参数根据Weis-Fogh,和Vogel果蝇捆绑飞行的数据得到。分别数值模拟了三种运动模态:超前模式(advanced mode),对称模式(symmetrical mode)和滞后模式(delayed mode)。数值模拟的结果同Dickinson的试验结果和孙茂的数值模拟结果进行了比较,吻合很好,表明本文的计算结果是合理的。根据数值模拟结果,结合气动力系数和流场结构进行分析,研究了果蝇悬停飞行获得高升力的流动机理。  相似文献   
35.
三角翼大攻角绕流数值模拟研究   总被引:1,自引:0,他引:1  
白鹏  周伟江  汪翼云 《航空学报》1999,20(3):254-257
采用Harten-Yee的二阶精度隐式TVD格式对N-S方程进行数值模拟,研究了后掠角为65°和70°的三角翼绕流的流场特性。计算结果表明:TVD格式中限制器函数的选取对于三角翼绕流结构的计算结果具有较重要的影响。结合张涵信的旋涡定性分析理论对旋涡的发展过程进行研究,此外,还对二次涡破裂现象和网格分布影响等问题进行了探讨。  相似文献   
36.
智能变形飞行器的发展道路   总被引:7,自引:0,他引:7  
无论是飞行动物还是人造飞行器,为了执行不同任务(如巡航、盘旋、攻击、逃生等),或为了满足飞行环境(如高度、速度、气候等)的不同要求,往往需要相应调整其形态,以达到高效能、安全以及任务要求等目的.  相似文献   
37.
变后掠变展长翼身组合体系统设计与特性分析   总被引:2,自引:0,他引:2  
为了探索可变形飞行器气动、结构和控制关键技术,在可变后掠角及展长的翼身组合体风洞试验模型系统设计与特性分析方面开展了研究。系统设计包括总体方案设计、近似理论分析与计算流体力学(CFD)数值模拟、结构与控制技术集成;特性分析包括结构特性、控制特性、定常与非定常气动特性的测试及其分析。结果表明:大尺度变形能显著改变飞行器的升力、阻力和升阻比等气动特性,进而使可变形飞行器能适应多种环境和任务,因而在全飞行周期中比传统固定外形飞行器具有更优的性能。  相似文献   
38.
可连续光滑偏转后缘的变弯度翼型气动特性分析   总被引:5,自引:0,他引:5  
以变弯度翼型为研究对象,计算了其六种外形的绕流流场,分析了不同的连续光滑变形翼型与传统偏转翼型的气动特性,讨论了变形参数对气动特性的影响,研究了气动特性的产生机理;与此同时,以形状记忆聚合物柔性蒙皮和机械结构实现了可连续光滑偏转后缘的变弯度翼型,并在风洞实验中测试了其气动特性。计算和实验结果表明:可连续光滑偏转后缘的变弯度翼型能改进传统主翼-简单襟翼翼型的气动特性和流场分离特性;可变形段范围、转轴位置、后缘偏转角度、后缘高度等变形参数对气动特性具有显著影响。  相似文献   
39.
本文探究深度学习人工智能技术在飞行器气动外形预测中的应用。以激波装配法乘波体设计为背景,建立气动数据快速生成工具,使用拉丁超立方采样得到海量样本数据。使用深度残差神经网络构建气动外形参数到气动性能数据的代理模型,并与随机森林和双隐层神经网络等普通机器学习模型对比;同时将数据转换为图片,研究基于图片识别的深度学习模型搭建,省略飞行器外形的参数化表达。测试结果说明,深度残差网络作为数据代理模型的精度是随机森林和双隐层神经网络的3倍以上,而基于图片识别的代理模型精度提高有限。研究表明,深度残差网络在乘波体等易于生成大量数据的气动外形的性能预测中效果明显,为深度学习技术在气动外形设计中的应用奠定了基础。  相似文献   
40.
飞机大尺度全局变形过程中存在诸多需要研究的基础问题,为此构建了研究平台并开展了实验研究。基于飞行器机翼"旋转变后掠"与"剪切变后掠"的气动特性计算结果,设计了气动特性相对较优的飞机外翼段大尺度剪切式变后掠方式;研制了基于可控变形结构与连续变形规律的实验模型;进行了风洞实验研究。结果表明:本文研制的剪切式变后掠飞机在蒙皮、结构、驱动、控制等方面满足气动特性研究的需求;其准定常气动特性曲线显示出变后掠的较大气动效益;其非定常气动特性曲线呈现出滞回环,原因可能在于"机翼附加速度效应"和"流场结构迟滞效应"。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号