首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   0篇
  国内免费   7篇
航空   162篇
航天技术   195篇
综合类   1篇
航天   72篇
  2021年   11篇
  2019年   9篇
  2018年   13篇
  2017年   7篇
  2016年   5篇
  2015年   1篇
  2014年   12篇
  2013年   20篇
  2012年   16篇
  2011年   22篇
  2010年   13篇
  2009年   15篇
  2008年   32篇
  2007年   7篇
  2006年   8篇
  2005年   22篇
  2004年   12篇
  2003年   9篇
  2002年   7篇
  2001年   12篇
  2000年   2篇
  1999年   6篇
  1998年   9篇
  1997年   2篇
  1996年   3篇
  1995年   13篇
  1994年   4篇
  1992年   9篇
  1991年   2篇
  1990年   3篇
  1989年   10篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   11篇
  1984年   20篇
  1983年   11篇
  1982年   12篇
  1981年   25篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有430条查询结果,搜索用时 15 毫秒
341.
342.
The Student Dust Counter (SDC) experiment of the New Horizons Mission is an impact dust detector to map the spatial and size distribution of dust along the trajectory of the spacecraft across the solar system. The sensors are thin, permanently polarized polyvinylidene fluoride (PVDF) plastic films that generate an electrical signal when dust particles penetrate their surface. SDC is capable of detecting particles with masses m>10?12 g, and it has a total sensitive surface area of about 0.1 m2, pointing most of the time close to the ram direction of the spacecraft. SDC is part of the Education and Public Outreach (EPO) effort of this mission. The instrument was designed, built, tested, integrated, and now is operated by students.  相似文献   
343.
This chapter reviews how our knowledge of CMEs and CME-associated phenomena has been improved, since the launch of the SOHO mission, thanks to multi-wavelength analysis. The combination of data obtained from space-based experiments and ground based instruments allows us to follow the space-time development of an event from the bottom of the corona to large distances in the interplanetary medium. Since CMEs originate in the low solar corona, understanding the physical processes that generate them is strongly dependant on coordinated multi-wavelength observations. CMEs display a large diversity in morphology and kinematic properties, but there is presently no statistical evidence that those properties may serve to group them into different classes. When a CME takes place, the coronal magnetic field undergoes restructuring. Much of the current research is focused on understanding how the corona sustains the stresses that allow the magnetic energy to build up and how, later on, this magnetic energy is released during eruptive flares and CMEs. Multi-wavelength observations have confirmed that reconnection plays a key role during the development of CMEs. Frequently, CMEs display a rather simple shape, exhibiting a well known three-part structure (bright leading edge, dark cavity and bright knot). These types of events have led to the proposal of the ‘`standard model’' of the development of a CME, a model which predicts the formation of current sheets. A few recent coronal observations provide some evidence for such sheets. Other more complex events correspond to multiple eruptions taking place on a time scale much shorter than the cadence of coronagraph instruments. They are often associated with large-scale dimming and coronal waves. The exact nature of these waves and the physical link between these different manifestations are not yet elucidated. We also discuss what kind of shocks are produced during a flare or a CME. Several questions remain unanswered. What is the nature of the shocks in the corona (blast-wave or piston-driven?) How they are related to Moreton waves seen in Hα? How they are related to interplanetary shocks? The last section discusses the origin of energetic electrons detected in the corona and in the interplanetary medium. “Complex type III-like events,”which are detected at hectometric wavelengths, high in the corona, and are associated with CMEs, appear to originate from electrons that have been accelerated lower in the corona and not at the bow shock of CMEs. Similarly, impulsive energetic electrons observed in the interplanetary medium are not the exclusive result of electron acceleration at the bow shocks of CMEs; rather they have a coronal origin.  相似文献   
344.
采用同轴送粉方法,激光熔覆制备了WC增强Ni3Al金属间化合物基复合涂层,通过试验,优化了工艺参数,对激光熔覆涂层的成分、组织和硬度进行了测试和分析.结果表明,激光熔覆涂层无裂纹和气孔,与基体形成良好的冶金结合,WC颗粒的添加显著提高了涂层硬度.  相似文献   
345.
It was 100 years ago (on August 7, 1920), that the comprehensive mathematical foundations of climate change research, written by a Serbian researcher, Milutin Milankovitch, were published. A later interpreter and developer of his results, Georg (in Hungarian: György) Bacsák (Pozsony/Pressburg/Bratislava, June 5, 1870 - Fonyód, March 4, 1970) was born 150 years ago and died at the age of one hundred, half a century ago. In this commemorative paper we look back to special circumstances in revealing the secrets of ice ages that had puzzled scientists for at least several centuries. Recently, after 100 years, the Milankovitch theory, including related short-term forcings (ranging from interannual, multidecadal to millennial timescales) has not only been confirmed, but its climate forcing mechanism has also been identified and proposed. Owing to the uniqueness of the problem, the science of the orbital forcing of climate change can be proclaimed to be essentially settled.  相似文献   
346.
Compressional waves propagating in the partially ionised solar lower atmospheric plasmas can easily steepen into nonlinear waves, including shocks. Here we investigate the effect of weak dispersion generated by Hall currents perpendicular to the ambient magnetic field on the characteristics of shock waves. Our study will also focus on the interplay between weak dispersion and partial ionisation of the plasma. Using a multiple scale technique we derive the governing equation in the form of a Korteweg-de Vries-Burgers equation. The effect of weak dispersion on shock waves is obtained using a perturbation technique. The secular behaviour of second order terms is addressed with the help of a renormalization technique. Our results show that dispersion modifies the characteristics of shock waves and this change is dependent also on the ionisation degree of the plasma. Dispersion can create short lived oscillations in the shocked plasma. The shock fronts become wider with the increase in the number of neutrals in the plasma.  相似文献   
347.
Due to the presence of water vapour and cloud liquid water in the atmosphere, the wet component of the troposphere is responsible for a delay in the propagation of the altimeter signals, the Wet Path Delay (WPD). The high space–time variability of the water vapour distribution makes the modelling of WPD difficult, its effect still being one of the main error sources in satellite altimetry applications, e.g. in the estimation of Mean Sea Level (MSL). The understanding and the quantification of the WPD variability on various spatial and temporal scales are the main purposes of this study, in view to improve the MSL error budget. The dominant timescales of WPD variability and its correlation with Sea Level Anomaly (SLA) are examined. In these analyses, the atmospheric reanalysis ERA-Interim model from the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to derive a global dataset of daily grids of WPD, spanning a 28-year period from January 1988 to December 2015. The Seasonal-Trend decomposition procedure based on Loess (STL) is used to extract precise WPD annual and interannual signals. Linear trends have been derived from the interannual time series and the contribution of each STL component was mapped globally, allowing the understanding of the WPD variability in spatial terms. The correlation between SLA and WPD is mapped and decomposed into seasons using monthly mean grids, for a period of 21-years, from January 1993 to December 2013.Aiming at inspecting the sensitivity of the results to the used data set, the WPD temporal analysis is extended to the data set provided by the Special Sensor Microwave Imager (SSM/I) and SSM/I Sounder (SSM/IS) Sensors. The WPD from SSM/I(S) is compared against those from the ERA-Interim and from the National Centers for Environmental Prediction (NCEP).Results show that climate phenomena, especially the El Niño Southern Oscillation (ENSO) are the cause for this high variability, since they affect the water vapour and temperature. The observed trends from ERA-Interim, computed globally and over ocean regions only, allow concluding that WPD is increasing with time by approximately 0.1?mm per year, and the maximum trends are observed for the Pacific North and Indian Oceans. High correlation between WPD and SLA is found over the western tropical Pacific.The comparison between WPD from SSM/I(S) and from ERA-Interim and NCEP, allows concluding that the trends computed using only the SSM/I(S) measurement points are substantially larger.  相似文献   
348.
Effects of reduced frequency, stop angle, and pause duration have been studied on a thin supercritical airfoil undergoing a pitch-pause-return motion, which is one of the classic maneuvers introduced by the AIAA Fluid Dynamics Technical Committee. Experiments were conducted in a low-speed wind tunnel at both a constant mean angle of attack and an oscillation amplitude with a reduced frequency ranging from 0.01 to 0.12. The desired stop angles of the airfoil were set to occur during the upstroke motion. The unsteady pressure distribution on the airfoil was measured for below, near, and beyond static stall conditions. Results showed that the reduced frequency and stop angle were the dominant contributors to the time lag in the flowfield. For stop angles in both below- and post-stall regions, the time for the flowfield to reach its steady state conditions, known as the time lag, decreased as the reduced frequency was increased. However, in the static-stall region and for a certain value of reduced frequency, a resonance phenomenon was observed, and a minimum time lag was achieved. The pressure distribution in this condition was shown to be highly influenced by this phenomenon.  相似文献   
349.
The magnetic flux of tail lobes Ψ is divided in two parts of comparable values Ψ1 and Ψ02, with the first that appears during substorm and the second, observed before substorm start. The first was named “new magnetic flux”, the second – “old magnetic flux”. The first, Ψ1, is known to play a definitive role in the energy transport from the solar wind into the magnetosphere-ionosphere-atmosphere system, but the role of Ψ02 in this transport is not well known. From the 27 August 2001 substorm data we study the involvement in the above transport process of the old flux Ψ02. This involvement is observed in the polar cap (PC) area, which existed prior to the substorm and is called respectively “the old PC”. In this study, as distinct from earlier works, we use the balance equation of the energy stored in magnetosphere and energy consumed. Activation of the old PC magnetic flux Ψ02 was found to increase the energy input by ∼85% in the event under consideration.  相似文献   
350.
The dual-frequency satellite-based measurements from Global Positioning System (GPS) may provide feasible ways of studying and potentially detecting of earthquake (EQ) related anomalies in the ionosphere. In this paper, GPS based Total Electron Content (TEC) data are studied for three major M?>?7.0 EQs in Nepal and Iran-Iraq border during 2015–2017 by implementing statistical procedures on temporal and spatial scale. Previous studies presented different time interval of pre-seismic ionospheric anomalies, however, this study showed that EQs ionospheric precursors may occur within 10?days. Furthermore, the ionospheric anomalies on the suspected day occurred during UT?=?08:00–12:00?h before the main shock. The Global Ionospheric Map TEC (GIM-TEC) data retrieved over the epicenter of M7.8 (Nepal EQ) showed a significant increase of 6 TECU on April 24, 2015 (one day before the main shock), which is recorded by the ground GPS station data of Islamabad (station lies within the EQ preparation zone). Furthermore, the spatial GIM-TEC result imply significant anomalies over the epicenter during the time interval between UT?=?08:00–12:00?h (LT?=?13:00–17:00). For M7.3 (Nepal EQ), the TEC anomalies were detected on May 10, 2015 (2?days before the event) in the temporal data. The spatial TEC data imply the huge clouds over the epicenter at about UT?=?08:00–12:00?h on May 10, 2015, that may be associated with this EQ in the quiet geomagnetic storm conditions. Similarly, temporal and spatial TEC showed anomaly on November 3, 2017, during UT?=?08:00–12:00 (9?days before the Iran-Iraq border EQ) after implementing the statistical method on it. Conversely, there exists a short-term but low magnitude TEC anomaly synchronized with a geomagnetic storm on November 7–8, 2017 (4 to 5?days prior to M7.3 Iran-Iraq border EQ). The diurnal and hourly GIM-TEC and VTEC data also imply the execution of ionospheric anomalies within 10?days prior to all events. All these positive anomalies in TEC may be due to the existence of a huge energy from the epicenter during the EQ preparation period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号