首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   0篇
  国内免费   7篇
航空   243篇
航天技术   197篇
综合类   1篇
航天   74篇
  2021年   7篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   7篇
  2014年   15篇
  2013年   25篇
  2012年   16篇
  2011年   23篇
  2010年   19篇
  2009年   17篇
  2008年   36篇
  2007年   14篇
  2006年   9篇
  2005年   15篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   14篇
  1999年   8篇
  1998年   16篇
  1997年   6篇
  1996年   5篇
  1995年   22篇
  1994年   6篇
  1993年   7篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   8篇
  1985年   18篇
  1984年   18篇
  1983年   13篇
  1982年   13篇
  1981年   19篇
  1980年   5篇
  1979年   5篇
  1978年   6篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1971年   4篇
  1970年   3篇
  1969年   2篇
  1967年   4篇
  1966年   2篇
排序方式: 共有515条查询结果,搜索用时 140 毫秒
431.
432.
The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution.  相似文献   
433.
In order to effectively study phototropism, the directed growth in response to light, we performed a series of experiments in microgravity to better understand light response without the “complications” of a 1-g stimulus. These experiments were named TROPI (for tropisms) and were performed on the European Modular Cultivation System (EMCS), a laboratory facility on the International Space Station (ISS). TROPI-1 was performed in 2006, and while it was a successful experiment, there were a number of technical difficulties. We had the opportunity to perform TROPI-2 in 2010 and were able to optimize experimental conditions as well as to extend the studies of phototropism to fractional gravity created by the EMCS centrifuge. This paper focuses on how the technical improvements in TROPI-2 allowed for a better experiment with increased scientific return. Major modifications in TROPI-2 compared to TROPI-1 included the use of spaceflight hardware that was off-gassed for a longer period and reduced seed storage (less than 2 months) in hardware. These changes resulted in increased seed germination and more vigorous growth of seedlings. While phototropism in response to red illumination was observed in hypocotyls of seedlings grown in microgravity during TROPI-1, there was a greater magnitude of red-light-based phototropic curvature in TROPI-2. Direct downlinking of digital images from the ISS in TROPI-2, rather than the use of analog tapes in TROPI-1, resulted in better quality images and simplified data analyses. In TROPI-2, improved cryo-procedures and the use of the GLACIER freezer during transport of samples back to Earth maintained the low temperature necessary to obtain good-quality RNA required for use in gene profiling studies.  相似文献   
434.
We carried out an assessment of surface and subsurface properties based on radar observations of the region in western Elysium Planitia selected as the landing site for the InSight mission. Using observations from Arecibo Observatory and from the Mars Reconnaissance Orbiter’s Shallow Radar (SHARAD), we examined the near-surface properties of the landing site, including characterization of reflectivity, near-surface roughness, and layering. In the Arecibo data (12.6-cm wavelength), we found a radar-reflective surface with no unusual properties that would cause problems for the InSight radar altimeter (7-cm wavelength). In addition, the moderately low backscatter strength is indicative of a relatively smooth surface at \({\sim} 10\mbox{-cm}\) scales that is composed of load-bearing materials and should not present a hazard for landing safety. For roughness at 10–100 m scales derived from SHARAD data, we find relatively low values in a narrow distribution, similar to those found at the Phoenix and Opportunity landing sites. The power of returns at InSight is similar to that at Phoenix and thus suggestive of near-surface layering, consistent with a layer of regolith over bedrock (e.g., lava flows) that is largely too shallow (\({<}10\mbox{--}20~\mbox{m}\)) for SHARAD to discern distinct reflectors. However, an isolated area outside of the ellipse chosen in 2015 for InSight’s landing shows faint returns that may represent such a contact at depths of \({\sim} 20\mbox{--}43~\mbox{m}\).  相似文献   
435.
We present the design, implementation, and on-ground performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field (\(17^{\circ}\times 12^{\circ}\)) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54–88 nm, are the Oii emission lines at 61.6 nm and 83.4 nm. Its design, using a single optical element, permits a 0 . ° 26 Open image in new window imaging resolution perpendicular to the spectral dispersion direction with a large (\(12^{\circ} \)) acceptance parallel to the dispersion direction while providing a slit-width dominated spectral resolution of \(R\sim25\) at 58.4 nm. Pre-flight calibration shows that the instrument has met all of the science performance requirements.  相似文献   
436.
According to the data of the BMSW/SPEKTR-R instrument, which measured the density and velocity of solar wind plasma with a record time resolution, up to ~3 ×10–2 s, the structure of the front of interplanetary shocks has been investigated. The results of these first investigations were compared with the results of studying the structure of the bow shocks obtained in previous years. A comparison has shown that the quasi-stationary (averaged over the rapid oscillations) distribution of plasma behind the interplanetary shock front was significantly more inhomogeneous than that behind the bow-shock front, i.e., in the magnetosheath. It has also been shown that, to determine the size of internal structures of the fronts of quasi-perpendicular (θBN > 45°) shocks, one could use the magnetic field magnitude, the proton density, and the proton flux of the solar wind on almost equal terms. A comparison of low Mach (М А < 2), low beta (β1 < 1) fronts of interplanetary and bow shocks has shown that the dispersion of oblique magnetosonic waves plays an essential role in their formation.  相似文献   
437.
Fisk  L. A.  Wenzel  K.-P.  Balogh  A.  Burger  R. A.  Cummings  A. C.  Evenson  P.  Heber  B.  Jokipii  J. R.  Krainev  M. B.  Kóta  J.  Kunow  H.  Le Roux  J. A.  McDonald  F. B.  McKibben  R. B.  Potgieter  M. S.  Simpson  J. A.  Steenberg  C. D.  Suess  S.  Webber  W. R.  Wibberenz  G.  Zhang  M.  Ferrando  P.  Fujii  Z.  Lockwood  J. A.  Moraal  H.  Stone  E. C. 《Space Science Reviews》1998,83(1-2):179-214
The global processes that determine cosmic ray modulation are reviewed. The essential elements of the theory which describes cosmic ray behavior in the heliosphere are summarized, and a series of discussions is presented which compare the expectations of this theory with observations of the spatial and temporal behavior of both galactic cosmic rays and the anomalous component; the behavior of cosmic ray electrons and ions; and the 26-day variations in cosmic rays as a function of heliographic latitude. The general conclusion is that the current theory is essentially correct. There is clear evidence, in solar minimum conditions, that the cosmic rays and the anomalous component behave as is expected from theory, with strong effects of gradient and curvature drifts. There is strong evidence of considerable latitude transport of the cosmic rays, at all energies, but the mechanism by which this occurs is unclear. Despite the apparent success of the theory, there is no single choice for the parameters which describe cosmic ray behavior, which can account for all of the observed temporal and spatial variations, spectra, and electron vs. ion behavior.  相似文献   
438.
We compared the H I Lyα polar coronal hole profiles obtained during the three Spartan 201 flights (in 1993, 1994, and 1995) and during the more recent UVCS/SOHO mission. We found that at 2.1 R there are no significant variations of the line shape over the several years of the descending phase of the solar cycle. However, there may be some evidence for the 1.8 R profiles being broader towards solar minimum. The profiles at 2.1 R are different from profiles obtained at 1.8 R; they have clearly narrower cores and wide wings. We fitted the profiles with single and/or multiple Gaussian functions and calculated their typical 1/e half widths. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
439.
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
440.
The idea of expedient energy transformation by magnetic reconnection (MR) has generated much enthusiasm in the space plasma community. The early concept of MR, which was envisioned for the solar flare phenomenon in a simple two-dimensional (2D) steady-state situation, is in dire need for extension to encompass three-dimensional (3D) non-steady-state phenomena prevalent in space plasmas in nature like in the magnetosphere. A workshop was organized to address this and related critical issues on MR. The essential outcome of this workshop is summarized in this review. After a brief evaluation on the pros and cons of existing definitions of MR, we propose essentially a working definition that can be used to identify MR in transient and spatially localized phenomena. The word “essentially” reflects a slight diversity in the opinion on how transient and localized 3D MR process might be defined. MR is defined here as a process with the following characteristics: (1) there is a plasma bulk flow across a boundary separating regions with topologically different magnetic field lines if projected on the plane of MR, thereby converting magnetic energy into kinetic particle energy, (2) there can be an out-of-the-plane magnetic field component (the so-called guide field) present such that the reconnected magnetic flux tubes are twisted to form flux ropes, and (3) the region exhibiting non-ideal MHD conditions should be localized to a scale comparable to the ion inertial length in the direction of the plasma inflow velocity. This definition captures the most important 3D aspects and preserves many essential characteristics of the 2D case. It may be considered as the first step in the generalization of the traditional 2D concept. As a demonstration on the utility of this definition, we apply it to identify MR associated with plasma phenomena in the dayside magnetopause and nightside magnetotail of the Earth’s magnetosphere. How MR may be distinguished from other competing mechanisms for these magnetospheric phenomena are then discussed.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号