首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   0篇
  国内免费   7篇
航空   243篇
航天技术   197篇
综合类   1篇
航天   74篇
  2021年   7篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   7篇
  2014年   15篇
  2013年   25篇
  2012年   16篇
  2011年   23篇
  2010年   19篇
  2009年   17篇
  2008年   36篇
  2007年   14篇
  2006年   9篇
  2005年   15篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   14篇
  1999年   8篇
  1998年   16篇
  1997年   6篇
  1996年   5篇
  1995年   22篇
  1994年   6篇
  1993年   7篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   8篇
  1985年   18篇
  1984年   18篇
  1983年   13篇
  1982年   13篇
  1981年   19篇
  1980年   5篇
  1979年   5篇
  1978年   6篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1971年   4篇
  1970年   3篇
  1969年   2篇
  1967年   4篇
  1966年   2篇
排序方式: 共有515条查询结果,搜索用时 15 毫秒
141.
The Medium Energy Instrument on EXOSAT, although conceived as the main instrument for occultations, has been made sufficiently versatile to provide a significant advance over previous large area proportional counters when used for individual source studies of timing and spectra. The energy range is 1.2 to 50 keV, with E/E of 0.2 at 6 keV, sufficient to detect iron lines. The effective area of 1800 cm2 and narrow field of view (3/4° × 3/4°) make it suitable for the detailed study of sources down to the 0.3 mCrab confusion limit. The unique facility provided by EXOSAT, allowing uninterrupted observations of X-ray sources for periods of up to 80 hours, backed up by a high capacity data link and on-board processing, enables timing studies to be performed over the range from milliseconds to days. Sophisticated background discrimination techniques giving a rejection efficiency of99% will control the background count rate to a suitably low value in the environment of the 200,000 km orbit.  相似文献   
142.
During the last several years significant progress has been made in understanding MHD turbulence in the Earth’s plasma sheet. Due to the statistically transitory properties of fluctuations, finite size and boundary effects, however, issues of fundamental importance remain unresolved. Here we concentrate on such intrinsic features of plasma sheet turbulence as its origin and dynamical nature. In particular, we investigate bursty bulk flow driven multi-scale transfer of energy towards the dissipation scale, and provide evidence for the presence of non-linear interactions. We show that, in contrast with previous results, Alfvénic fluctuations together with 2D eddy interactions may appear as important constituents of turbulence in the plasma sheet.  相似文献   
143.
This chapter provides an overview of current efforts in the theory and modeling of CMEs. Five key areas are discussed: (1) CME initiation; (2) CME evolution and propagation; (3) the structure of interplanetary CMEs derived from flux rope modeling; (4) CME shock formation in the inner corona; and (5) particle acceleration and transport at CME driven shocks. In the section on CME initiation three contemporary models are highlighted. Two of these focus on how energy stored in the coronal magnetic field can be released violently to drive CMEs. The third model assumes that CMEs can be directly driven by currents from below the photosphere. CMEs evolve considerably as they expand from the magnetically dominated lower corona into the advectively dominated solar wind. The section on evolution and propagation presents two approaches to the problem. One is primarily analytical and focuses on the key physical processes involved. The other is primarily numerical and illustrates the complexity of possible interactions between the CME and the ambient medium. The section on flux rope fitting reviews the accuracy and reliability of various methods. The section on shock formation considers the effect of the rapid decrease in the magnetic field and plasma density with height. Finally, in the section on particle acceleration and transport, some recent developments in the theory of diffusive particle acceleration at CME shocks are discussed. These include efforts to combine self-consistently the process of particle acceleration in the vicinity of the shock with the subsequent escape and transport of particles to distant regions.  相似文献   
144.
Magnetic turbulence is found in most space plasmas, including the Earth’s magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α?2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations.  相似文献   
145.
Temporal and Spatial Variation of the Ion Composition in the Ring Current   总被引:3,自引:0,他引:3  
A global view of the ring current ions is presented using data acquired by the instrument MICS onboard the CRRES satellite during solar maximum. The variations of differential intensities, energy spectra, radial profile of the energetic particles and the origin of the magnetic local time (MLT) asymmetry of the ring current have been investigated in detail. O+ ions are an important contributor to the storm time ring current. Its abundance in terms of number density increases with increasing geomagnetic activity as well as its energy density. However, a saturation value for the energy density of O+ ions has been found. The low-energy H+ ions show a dramatic intensification and a rapid decay. However, its density ratio during the storm maximum is almost constant. On the other hand, high-energy H+ ions first exhibit a flux decrease followed by a delayed increase. Its density ratio shows an anti-correlation with the storm intensity. Both the positions of the maximum flux of O+ and He+ depend on storm activity: they move to lower altitudes in the early stage of a storm and move back to higher L-values during the recovery phase. Whereas the position of H+ and He++ show almost no dependence on the Dst index. The energy density distributions in radial distance and magnetic local time show drastic differences for different ion species. It demonstrates that the ring current asymmetry mainly comes from oxygen and helium ions, but not from protons. The outward motion of O+ around local noon may have some implications for oxygen bursts in the magnetosheath during IMF Bz negative conditions as observed by GEOTAIL.  相似文献   
146.
The ACE Magnetic Fields Experiment   总被引:2,自引:0,他引:2  
Smith  C.W.  L'Heureux  J.  Ness  N.F.  Acuña  M.H.  Burlaga  L.F.  Scheifele  J. 《Space Science Reviews》1998,86(1-4):613-632
The magnetic field experiment on ACE provides continuous measurements of the local magnetic field in the interplanetary medium. These measurements are essential in the interpretation of simultaneous ACE observations of energetic and thermal particles distributions. The experiment consists of a pair of twin, boom- mounted, triaxial fluxgate sensors which are located 165 inches (=4.19 m) from the center of the spacecraft on opposing solar panels. The electronics and digital processing unit (DPU) is mounted on the top deck of the spacecraft. The two triaxial sensors provide a balanced, fully redundant vector instrument and permit some enhanced assessment of the spacecraft's magnetic field. The instrument provides data for Browse and high-level products with between 3 and 6 vector s−1 resolution for continuous coverage of the interplanetary magnetic field. Two high-resolution snapshot buffers each hold 297 s of 24 vector s−1 data while on- board Fast Fourier Transforms extend the continuous data to 12 Hz resolution. Real-time observations with 1-s resolution are provided continuously to the Space Environmental Center (SEC) of the National Oceanographic and Atmospheric Association (NOAA) for near- instantaneous, world-wide dissemination in service to space weather studies. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the interplanetary medium in support of the fundamental goals of the ACE mission and cooperative studies with other ACE investigators using the combined ACE dataset as well as other ISTP spacecraft involved in the general program of Sun-Earth Connections. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
147.
Solar radio burst, especially the fine structures (FSs) and the drifting pulsation structures (DPSs), may be used as an important diagnostics tool to draw the evolution map of the flare loop in the initial phase of solar flares. In this work, 52 radio events were found accompanying with DPSs. They were all observed with the Solar Radio Spectrometers (0.625–7.6 GHz) of China during 1998–2004. Combining the radio observations with LASCO-C2, Goes-8 SXR, Hα, EUV and Trace observations, we analyzed all these events and obtained some statistic conclusions: First, 88% DPSs take place at the initial phase of the radio burst, and their rich spectrum characteristics are helpful to understand the events further. Second, 83% DPSs are associated with CMEs or ejection events, and all the events are accompanied by Goes SXR flare. Third, for CMEs and DPSs, which take the first step, there is no significant predominance of either of them. The relationship between the DPSs and CMEs is still not clear in this study because of the lack of spatial resolution in the centimeter–decimeter band. However, the EIT or Trace ejection happened during the onset/end time of DPSs. They are signatures of the initial phase of CMEs. Two events will be illustrated to explain this.  相似文献   
148.
A joint team of researchers under the auspices of the Center for Space Debris Information Collection, Processing and Analysis of the Russian Academy of Sciences collaborates with 15 observatories around the world to perform observations of space debris. For this purpose, 14 telescopes were equipped with charge-coupled device (CCD) cameras, Global Positioning System (GPS) receivers, CCD frame processing and ephemeris computation software, with the support of the European and Russian grants. Many of the observation campaigns were carried out in collaboration with the Astronomical Institute of the University of Bern (AIUB) team operating at the Zimmerwald observatory and conducting research for the European Space Agency (ESA), using the Tenerife/Teide telescope for searching and tracking of unknown objects in the geostationary region (GEO). More than 130,000 measurements of space objects along a GEO arc of 340.9°, collected and processed at Space Debris Data Base in the Ballistic Center of the Keldysh Institute of Applied Mathematics (KIAM) in 2005–2006, allowed us to find 288 GEO objects that are absent in the public orbital databases and to determine their orbital elements. Methods of discovering and tracking small space debris fragments at high orbits were developed and tested. About 40 of 150 detected unknown objects of magnitudes 15–20.5 were tracked during many months. A series of dedicated 22-cm telescopes with large field of view for GEO survey tasks is in process of construction. 7 60-cm telescopes will be modernized in 2007.  相似文献   
149.
We investigated the spatial distribution of the induction of the phosphorylated form of the histone protein H2AX (gamma-H2AX), known to be activated by DSBs. Following irradiation of human fibroblast cells with 600 MeV/nucleon silicon and 600 MeV/nucleon iron ions we observed the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/y plane. Polyethylene shielding was used to achieve a Bragg curve distribution with beam geometry parallel to the monolayer of cells. We present data that highlights the formation of immunofluorescent gamma-H2AX tracks showing the ion trajectories across the Bragg peak of irradiated human fibroblast cells. Qualitative analyses of these distributions indicated potentially increased clustering of DNA damage before the Bragg peak, enhanced gamma-H2AX distribution at the peak, and provided visual evidence of high-linear energy transfer particle traversal of cells beyond the Bragg peak in agreement with one-dimensional transport approximations. Spatial assessment of gamma-H2AX fluorescence may provide direct insights into DNA damage across the Bragg curve for high charge and energy ions including the biological consequences of shielding and possible contributors to bystander effects.  相似文献   
150.
Achieving the United States’ Vision for future Space Exploration will necessitate far greater collaboration between humans and automated technology than previous space initiatives. However, the development of methodologies to optimize this collaboration currently lags behind development of the technologies themselves, thus potentially decreasing mission safety, efficiency and probability of success. This paper discusses the human supervisory control (HSC) implications for use in space, and outlines several areas of current automated space technology in which the function allocation between humans and machines/automation is sub-optimal or under dispute, including automated spacecraft landings, Mission Control, and wearable extra-vehicular activity computers. Based on these case studies, we show that a more robust HSC research program will be crucial to achieving the Vision for Space Exploration, especially given the limited resources under which it must be accomplished.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号