首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5666篇
  免费   664篇
  国内免费   503篇
航空   3180篇
航天技术   1755篇
综合类   432篇
航天   1466篇
  2024年   17篇
  2023年   53篇
  2022年   114篇
  2021年   169篇
  2020年   137篇
  2019年   123篇
  2018年   160篇
  2017年   170篇
  2016年   147篇
  2015年   166篇
  2014年   235篇
  2013年   238篇
  2012年   252篇
  2011年   302篇
  2010年   324篇
  2009年   373篇
  2008年   340篇
  2007年   249篇
  2006年   197篇
  2005年   206篇
  2004年   158篇
  2003年   201篇
  2002年   200篇
  2001年   204篇
  2000年   149篇
  1999年   185篇
  1998年   152篇
  1997年   139篇
  1996年   126篇
  1995年   159篇
  1994年   150篇
  1993年   73篇
  1992年   104篇
  1991年   56篇
  1990年   54篇
  1989年   73篇
  1988年   38篇
  1987年   43篇
  1986年   31篇
  1985年   89篇
  1984年   49篇
  1983年   50篇
  1982年   63篇
  1981年   92篇
  1980年   28篇
  1979年   26篇
  1978年   25篇
  1977年   19篇
  1975年   18篇
  1972年   18篇
排序方式: 共有6833条查询结果,搜索用时 15 毫秒
281.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
282.
An analysis is presented that forms the basis for an algorithm for calculating the IGBT losses in a power factor correction (PFC) circuit. The method employs experimental data from an off-line test circuit that closely resembles the switching conditions in the actual PFC. This technique provides calculated values of both the conduction and switching losses of the main transistor in a boost-type PFC circuit. Results for a 6 kW PFC are included  相似文献   
283.
The current state of space life sciences knowledge and research is described. Findings about the health of astronauts in space are reviewed and a plea is made by some former astronauts to increase the amount of research being conducted. Longitudinal studies of the long term effects of space travel, especially radiation exposure, are being conducted and have yet to show any ill effects. Current research focuses are discussed, including Neurolab, an upcoming shuttle mission devoted to neurological and vestibular research. Experiment and spacecraft hardware is discussed, as are future directions in research. Partnership with Russian space life sciences investigators is also underway.  相似文献   
284.
为了提高永磁同步电机无位置传感器技术的控制性能,在电机动态品质优化的研究中,以滑模变结构控制器替代传统的PI控制器,采用新型趋近律函数改进滑模控制器的输出模型,削弱了传统滑模控制存在的抖振,提高了控制系统的抗干扰能力。在分析无位置传感器技术时,引入高通谐振滤波器,采用具备以高信噪比为特点的两相静止坐标系下高频脉振电流注入法。仿真结果表明,在带高通谐振滤波器的高频脉振电流注入法中运用滑模变结构控制器,提高了转子位置估计的精度,增强了控制系统的鲁棒性。  相似文献   
285.
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites.  相似文献   
286.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
287.
Exact multisensor dynamic bias estimation with local tracks   总被引:2,自引:0,他引:2  
An exact solution is provided for the multiple sensor bias estimation problem based on local tracks. It is shown that the sensor bias estimates can be obtained dynamically using the outputs of the local (biased) state estimators. This is accomplished by manipulating the local state estimates such that they yield pseudomeasurements of the sensor biases with additive noises that are zero-mean, white, and with easily calculated covariances. These results allow evaluation of the Cramer-Rao lower bound (CRLB) on the covariance of the sensor bias estimates, i.e., a quantification of the available information about the sensor biases in any scenario. Monte Carlo simulations show that this method has significant improvement in performance with reduced rms errors of 70% compared with commonly used decoupled Kalman filter. Furthermore, the new method is shown to be statistically efficient, i.e., it meets the CRLB. The extension of the new technique for dynamically varying sensor biases is also presented.  相似文献   
288.
针对飞行器结构采用的钛合金蜂窝壁板,采用试验研究和有限元分析相结合的方法,研究了通孔损伤对变截面钛合金蜂窝壁板拉伸性能的影响.其中,有限元模型采用参数化建模方法建立,包含蜂窝芯体细节和斜角区细节结构.研究结果显示,斜角区是变截面钛合金蜂窝壁板的薄弱部位,无损伤试验件的破坏模式为沿斜角起始区域内蒙皮倒圆处横截面断裂;对于...  相似文献   
289.
The geostationary tether satellite system expands the geostationary orbit resource from a one-dimensional arc into a two-dimensional disk. The tethered satellites, each several thousand kilometers apart and aligned along the local vertical, are stabilized at the altitude of the geosynchronous orbital speed. When this system is applied to communications systems, it is estimated that the number of satellites can be increased as much as thirteenfold and the communication capacity can be increased more than seventeenfold, compared with a conventional geostationary satellite orbit system  相似文献   
290.
提出一种面向硅压阻式压力传感器温度补偿的组合方法,采用拟合法建立不同温度下压力传感器变换函数,采用基于变换函数系数的线性插值法获得温度补偿后传感器变换函数,设计了压力传感器信号处理模块,开展了基于组合补偿方法的压力信号补偿过程仿真,结果表明经温度补偿后,压力测量精度在0.1%以内,温度补偿过程耗时约10 μs,补偿算法占用片上资源少,能够满足压气机出口压力测量要求。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号