首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
航空   6篇
航天技术   13篇
航天   3篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2014年   1篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1993年   1篇
  1986年   1篇
排序方式: 共有22条查询结果,搜索用时 265 毫秒
11.
12.
We propose a new type of wide band X-ray imaging spectrometer as a focal plane detector of the super mirror onboard on future X-ray missions including post Astro-E2. This camera is realized by the hybrid of back illumination CCDs and a back supportless CCD for 0.05–10 keV band, and a Micro Pixel Gas Chamber detecting X-rays at 10–80 keV.  相似文献   
13.
Next-generation Very Long Baseline Interferometry (VLBI) system designs are aiming at 1 mm global position accuracy. In order to achieve this, it is not only necessary to deploy improved VLBI systems, but also to develop analysis strategies that take full advantage of the observations taken. Since the new systems are expected to incorporate four independent radio frequency bands, it should be feasible to resolve phase ambiguities directly from post-correlation data, providing roughly an order of magnitude improvement in precision of the delay observable. As the unknown ambiguities are of integer nature, it is discussed here how they the can be resolved analytically using algorithms which have been developed for Global Navigation Satellite System (GNSS) applications. Furthermore, it will be shown that ionosphere contribution and source structure effects, so-called core-shifts, can be solved simultaneously with the delay, which is the main geodetic observable for follow-on analysis. In order to verify the proposed algorithm, simulated observations were created using parameters from actual design studies. It is shown that, even in the case of low signal-to-noise ratio observations, reliable phase ambiguity resolution can be achieved and it is discussed how the integer ambiguity recovery depends on the number of observations and signal-to-noise ratio.  相似文献   
14.
The balloon-borne very long baseline interferometry (VLBI) experiment is a technical feasibility study for performing radio interferometry in the stratosphere. The flight model has been developed. A balloon-borne VLBI station will be launched to establish interferometric fringes with ground-based VLBI stations distributed over the Japanese islands at an observing frequency of approximately 20?GHz as the first step. This paper describes the system design and development of a series of observing instruments and bus systems. In addition to the advantages of avoiding the atmospheric effects of absorption and fluctuation in high frequency radio observation, the mobility of a station can improve the sampling coverage (“uv-coverage”) by increasing the number of baselines by the number of ground-based counterparts for each observation day. This benefit cannot be obtained with conventional arrays that solely comprise ground-based stations. The balloon-borne VLBI can contribute to a future progress of research fields such as black holes by direct imaging.  相似文献   
15.
16.
The Multiband Imager (MI) is a high-resolution, multi-spectral imaging instrument for lunar exploration. It consists of two cameras, VIS and NIR, and is carried on the SELenological and ENgineering Explorer (SELENE), launched on Sep. 14, 2007. During the observation from January 2008 to June 2009, MI acquired about 450,000 scenes of multispectral image. The radiometric properties of the cameras were characterized using the pre-flight data derived in laboratory experiments with a calibrated integrating sphere. Twelve light source sets were used to examine the S/N ratio, linearity, and saturation level of the cameras. The dark field signal is quite stable in both cameras, having a noise level of less than 1 DN (VIS) and 2 DN (NIR). The fluctuation in the light field is also low (<2 DN), indicating that the spatial nonuniformity in the camera responses can be removed using a flat field. In order to remove the smear signals due to the frame transfer in the VIS data, we developed an iterate algorithm using all bands in the VIS camera. The S/N ratio, which is critical to the precision of the product, is estimated to exceed 160 for the VIS bands and 400 for the NIR bands under low illumination conditions (5% of lunar surface reflectance). Based on the S/N ratio, the radiometric error due to the noise is calculated to be less than 0.7% for VIS and 0.2% for NIR. The relationship between input and output of the VIS camera is linear with a residual of less than 0.6 DN, corresponding to a radiometric error of 0.3%. The NIR exhibits a non-linear response to the input radiance. A cubic function best fits the pre-flight data with an average residual of 8 DN (corresponds to an error of 0.8%). Validation using in-flight data indicated that the instability of the dark output has not changed, but the level of dark output has slightly changed in the NIR bands (less than 6 DN). The pixel-to-pixel sensitivity variation in the orbit has been changed from that in the pre-flight experiment. The difference between the in-flight data and the pre-flight data ranges within ±2%. There is also a small (less than ±1%) but nonnegligible difference between in-flight data of different cycles in both the VIS and NIR bands, suggesting that the coefficient for spatial ununiformity correction needs to be calculated for each cycle.  相似文献   
17.
Aymeric Spiga  Don Banfield  Nicholas A. Teanby  François Forget  Antoine Lucas  Balthasar Kenda  Jose Antonio Rodriguez Manfredi  Rudolf Widmer-Schnidrig  Naomi Murdoch  Mark T. Lemmon  Raphaël F. Garcia  Léo Martire  Özgür Karatekin  Sébastien Le Maistre  Bart Van Hove  Véronique Dehant  Philippe Lognonné  Nils Mueller  Ralph Lorenz  David Mimoun  Sébastien Rodriguez  Éric Beucler  Ingrid Daubar  Matthew P. Golombek  Tanguy Bertrand  Yasuhiro Nishikawa  Ehouarn Millour  Lucie Rolland  Quentin Brissaud  Taichi Kawamura  Antoine Mocquet  Roland Martin  John Clinton  Éléonore Stutzmann  Tilman Spohn  Suzanne Smrekar  William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.  相似文献   
18.
Despite huge amount of data collected by the previous interplanetary spacecraft and probes, the origin and evolution of the solar system still remains unveiled due to limited information they brought back. Thus, the Institute of Space and Astronautical Science (ISAS) of Japan has been given a commitment to pave the way to an asteroid sample return mission: the MUSES-C project. A key to success is considered the reentry with hyperbolic velocity, which has not ever been demonstrated as yet. With this as background, a demonstrator of atmospheric reentry system, DASH, has been designed to demonstrate the high-speed reentry technology as a GTO piggyback mission. The capsule, identical to that of the sample return mission, can experience the targeted level of thermal environment even from the GTO by tracing a specially designed reentry trajectory. After the purpose of the mission was outlined at the last IAF symposium, the final fitting tests have been conducted in the ISAS Sagamihara Campus involving the flight model hardware. Furthermore, a series of rehearsals for recovery have been already executed. The paper describes the current mission status of the project.  相似文献   
19.
The thermal properties of InSb, GaSb and InxGa1−xSb, such as the viscosity, wetting property, and evaporation rate, were investigated in preparation for the crystal growth experiment on the International Space Station (ISS). The viscosity of InGaSb, which is an essential property for numerical modeling of crystal growth, was evaluated. In addition, the wetting properties between molten InxGa1−xSb and quartz, BN, graphite, and C-103 materials were investigated. The evaporation rate of molten InxGa1−xSb was measured to determine the affinity of different sample configurations. From the measurements, it was found that the viscosity of InxGa1−xSb was between that of InSb and GaSb. The degree of wetting reaction between molten InxGa1−xSb and the C-103 substrate was very high, whereas that between molten InxGa1−xSb and quartz, BN, and graphite substrates was very low. The results suggest that BN and graphite can be used as materials to cover InSb and GaSb samples inside a quartz ampoule during the microgravity experiments. In addition, the difference of the evaporation rate of molten InxGa1−xSb, GaSb, and InSb was small at low, and large at high temperature.  相似文献   
20.
Even sub-millimeter-size debris could cause a fatal damage on a spacecraft. Such tiny debris cannot be followed up or tracked from the ground. Therefore, Kyushu University has initiated IDEA the project for In-situ Debris Environmental Awareness, which conducts in-situ measurements of sub-millimeter-size debris. One of the objectives is to estimate the location of on-orbit satellite fragmentations from in-situ measurements. The previous studies revealed that it is important to find out the right nodal precession rate to estimate the orbital parameters of a broken-up object properly. Therefore, this study derives a constraint equation that applies to the nodal precession rate of the broken-up object. This study also establishes an effective procedure to estimate properly the orbital parameters of a broken-up object with the constraint equation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号