全文获取类型
收费全文 | 5090篇 |
免费 | 1651篇 |
国内免费 | 859篇 |
专业分类
航空 | 4603篇 |
航天技术 | 985篇 |
综合类 | 426篇 |
航天 | 1586篇 |
出版年
2024年 | 59篇 |
2023年 | 173篇 |
2022年 | 434篇 |
2021年 | 416篇 |
2020年 | 422篇 |
2019年 | 373篇 |
2018年 | 325篇 |
2017年 | 417篇 |
2016年 | 290篇 |
2015年 | 330篇 |
2014年 | 334篇 |
2013年 | 331篇 |
2012年 | 430篇 |
2011年 | 429篇 |
2010年 | 403篇 |
2009年 | 372篇 |
2008年 | 366篇 |
2007年 | 362篇 |
2006年 | 338篇 |
2005年 | 256篇 |
2004年 | 213篇 |
2003年 | 152篇 |
2002年 | 137篇 |
2001年 | 97篇 |
2000年 | 91篇 |
1999年 | 43篇 |
1998年 | 5篇 |
1997年 | 2篇 |
排序方式: 共有7600条查询结果,搜索用时 15 毫秒
41.
42.
为解决采用传统发电机的移动电站输出电源种类单一,而采用多台发电机又会造成底盘过载影响机动性的问题,文章基于电力综合集成技术,分析研究实现发电机的双流发电的关键技术,突破发电机多绕组发电及励磁解耦等难题,减小了电机体积、降低了电机重量,有利于移动电站的多功能化与小型化设计。 相似文献
43.
44.
采用数值模拟方法研究了延伸冲击孔冲击冷却系统的冷却特性,分析了3个冲击雷诺数和5个冲击孔延伸长度对冲击腔内流动与换热特性的影响,给出了靶面努塞尔数分布、靶面压力分布、中心截面流速与综合换热性能的变化。结果表明:延伸冲击孔可以有效地防止横流对冲击射流的偏转作用,同时使射流出口更加贴近冲击靶面壁面,冲击速度更高,可以明显提高靶面的换热系数,并使整个靶面上的换热系数分布也更加均匀。冲击冷却的冷却性能随着冲击孔延伸长度的增加而增加,相较于传统冲击冷却(baseline),在L/d=2.5时靶面平均努塞尔数提升达15%以上,但压力损失也相对较高;对比不同延伸长度冲击孔的综合换热性能,发现存在最佳的L/d取值范围使冲击冷却系统获得最佳的综合冷却性能。在本研究范围内,最佳的L/d= 2.5。 相似文献
45.
为展开运动边界下离心叶轮流场的数值分析,独立开发了网格变形程序和非定常流动模拟程序,实现了流场中振动离心叶轮的气动阻尼计算。采用紧支径向基函数法进行结构到气动表面变形的数据传递,应用二叉树技术进行壁面距离的计算,大幅提高了网格变形和流场分析中距离搜索的计算效率。通过振动叶栅和径向叶轮的算例,验证了程序应用于运动边界流场计算和叶轮流场模拟的正确性。以半开式叶轮为对象,展开其在行波振动条件下气动阻尼的计算分析。结果表明,叶轮在前、后行波振动下的气动阻尼均为正,后行波振动引起的气动推力和气动阻尼较大,叶轮表面的平均气动功率密度呈现循环对称的分布特征。 相似文献
46.
脉振的径向电磁力作为激励源作用于12/8极单绕组宽转子齿无轴承开关磁阻电机(Bearingless switched reluctance motor with wider rotor teeth,BSRMWR)的定子齿面并传送至定子轭部及机壳,会引发较大的振动噪声,阻碍其推广应用。针对这一问题,本文从本体结构的角度入手对电机壳体进行优化改进。采用三维多物理场有限元模型,建立了BSRMWR电磁-结构-振动-声场耦合模型。通过对BSRMWR电磁场进行瞬态分析,得到径向电磁力。将模态应变能方法应用于BSRMWR的壳体得到电机外壳结构有较大的应变能,说明电机壳体结构的薄弱。基于此,通过形貌优化的方法对电机的壳体结构进行优化。结果表明,采用形貌优化后机壳结构的BSRMWR,其振动和噪声均有显著改善。 相似文献
47.
48.
49.
针对采用双阀调节的恒压腔系统压力在空气流量大范围变化时的精确控制问题,提出了一种基于控制分配的恒压腔压力精准控制方法。首先,建立了虚拟放气流量的双阀控制分配算法,包括:建立满足虚拟放气流量要求且调节阀能耗最小的优化问题;通过线性矩阵不等式(Linear Matrix Inequality, LMI)求解该优化问题得到双阀实际流通面积值;考虑调节阀动态并计算调节阀控制信号指令值。其次,建立以虚拟放气流量为恒压腔控制输入的闭环负反馈回路,基于此,设计满足伺服性能和抗干扰性能要求的PI控制器,引入上述双阀控制分配算法,进而构建完整的基于控制分配的恒压腔压力控制系统。仿真结果表明,采用该方法的控制系统性能明显优于传统单阀PI控制系统性能,恒压腔压力动态相对误差小于0.07%;干扰流量最大变化率为77kg/s2时,压力最大偏差低于500Pa;此外,调节阀动态时间常数和流量系数的拉偏仿真结果进一步验证了该控制器的鲁棒性。 相似文献
50.