首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1056篇
  免费   17篇
  国内免费   3篇
航空   477篇
航天技术   467篇
综合类   15篇
航天   117篇
  2022年   5篇
  2021年   12篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   22篇
  2013年   21篇
  2012年   31篇
  2011年   43篇
  2010年   28篇
  2009年   49篇
  2008年   95篇
  2007年   26篇
  2006年   28篇
  2005年   45篇
  2004年   36篇
  2003年   30篇
  2002年   25篇
  2001年   50篇
  2000年   19篇
  1999年   35篇
  1998年   36篇
  1997年   13篇
  1996年   32篇
  1995年   20篇
  1994年   33篇
  1993年   21篇
  1992年   29篇
  1991年   10篇
  1990年   14篇
  1989年   31篇
  1988年   13篇
  1987年   6篇
  1986年   12篇
  1985年   19篇
  1984年   27篇
  1983年   22篇
  1982年   20篇
  1981年   24篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   6篇
  1974年   3篇
  1970年   3篇
  1969年   4篇
排序方式: 共有1076条查询结果,搜索用时 375 毫秒
861.
The role of waves in the dynamics of the magnetotail has long been a topic of interest in magnetospheric physics. The characteristics of Electrostatic Solitary Waves (ESWs) associated with reconnection have been studied statistically in the magnetotail by surveying the large amounts data obtained from Waveform Capture (WFC) which is an important component of Plasma Wave Instrument (PWI) on the Geotail spacecraft. About 150 reconnection events with WFC data available are selected, and approximately 10 thousands of ESW waveforms are picked up by hands for statistical study. The ESWs are observed near diffusion region and near the plasma sheet boundary layer (PSBL). Two kinds of waveforms of ESWs are observed: bi-polar and tri-polar pulses. It is found that the pulse width of the ESWs is in the order of 1–5 ms and the peak-to-peak amplitude is in the order of 0.1–5 mV/m. The amplitudes of ESWs are larger in the near-earth tail region than that in deep tail region. ESWs have been observed with or without guide magnetic field 〈By〉. The characteristics of ESWs in different reconnection region and under different strength of guild magnetic field, their possible generation mechanism will be discussed.  相似文献   
862.
From the viewpoint of plasma particle measurements in the radiation belt, background noise is a serious problem. High-energy particles penetrating the sensor shielding generate spurious signals, and their count rate often can be comparable to the true signals. In order to attenuate such background noise during medium-energy (5–83 keV) electron measurements, we propose the double energy analyses (DEA) method. DEA is conducted by a combination of an electrostatic analyser (ESA) and avalanche photo-diodes (APDs); ESA and APD independently determine the energy of each incoming particle. By using the DEA method, therefore, the penetrating particles can be rejected when the two energy determinations are inconsistent; spurious noise are caused only when the deposited energy at an APD is by chance consistent with the measured energy by ESA. We formulate the noise count rate and show the advantage of DEA method quantitatively.  相似文献   
863.
High frequency (HF) communication is strongly dependent on the state of the ionosphere, which specifies the mode structure of the radio wave propagating in ionosphere. Another core factor defining the strength of the HF signal at the receiving site is the ionospheric absorption. Accurate modelling the effect of absorption is an essential part of many studies of the HF propagation in the ionosphere.This paper proposes a method for estimating the absorption. The method is based on analysis of vertical sounding ionograms. The main idea of the approach is to compare the main parameters retrieved from measured and simulated ionograms. The combination of Global Ionospheric Radio Observatory (GIRO, http://giro.uml.edu) data and ionograms modelling allows for developing the empiric absorption model available at near real-time. The ionogram simulation taking into account absorption utilizes the NIM-RT (North Ionospheric Model and Ray Tracing) software. As a result, the proposed technique provides more reliable and accurate evaluation of minimum frequency at which echoes are observed in vertical incidence ionosonde soundings. The values of these frequencies should be used in the following simulation to optimize parameters in the empirical formulae for defining absorption HF wave in ionosphere.The ultimate objective of this work is the designing the method, which allows the simulating of HF radio channel accounting for regular absorption due to UV radiation of the Sun. Eventually it could be considered as some kind of the HF propagation forecasting.  相似文献   
864.
PHITS (Particle and Heavy-Ion Transport code System) is a general-purpose three-dimensional Monte Carlo code, developed and maintained by RIST, JAEA and KEK in Japan together with Sihver et al. at Chalmers in Sweden. PHITS can deal with the transports of all varieties of hadrons and heavy ions with energies up to around 100 GeV/nucleon, and in this paper the current status of PHITS is presented. We introduce a relativistically covariant version of JQMD, called R-JQMD, that features an improved ground state initialization algorithm, and we will present the introduction of electron and photon transport in PHITS using EGS5, which have increased the energy region for the photon and energy transport from up to around 3 GeV to up to several hundred GeV depending on the atomic number of the target. We show how the accuracy in dose and fluence calculations can be improved by using tabulated cross sections. Benchmarking of shielding and irradiation effects of high energy protons in different materials relevant for shielding of accelerator facilities is also presented. In particular, we show that PHITS can be used for estimating the dose received by aircrews and personnel in space. In recent years, many countries have issued regulations or recommendations to set annual dose limitations for aircrews. Since estimation of cosmic-ray spectra in the atmosphere is an essential issue for the evaluation of aviation doses, we have calculated these spectra using PHITS. The accuracy of the atmospheric propagation simulation of cosmic-ray performed by PHITS has been well verified by experimental cosmic-ray spectra taken under various conditions. Based on a comprehensive analysis of the simulation results, an analytical model called “PARMA” has been proposed for instantaneously estimating the atmospheric cosmic-ray spectra below the altitude of 20 km. We have also performed preliminary simulations of long-term dose distribution measurements at the ISS performed with the joint ESA-FSA experiment MATROSHKA-R (MTR-R) led by the Russian Federation Institute of Biomedical Problems (IMBP) and the ESA supported experiment MATROSHKA (MTR), led by the German Aerospace Center (DLR). For the purpose of examining the applicability of PHITS to the shielding design in space, the absorbed doses in a tissue equivalent water phantom inside an imaginary space vessel has been estimated for different shielding materials of different thicknesses. The results confirm previous results which indicate that PHITS is a suitable tool when performing shielding design studies of spacecrafts.  相似文献   
865.
ExoMars is a two-launch mission undertaken by Roscosmos and European Space Agency. Trace Gas Orbiter, a satellite part of the 2016 launch carries the Fine Resolution Neutron Detector instrument as part of its payload. The instrument aims at mapping hydrogen content in the upper meter of Martian soil with spatial resolution between 60 and 200 km diameter spot. This resolution is achieved by a collimation module that limits the field of view of the instruments detectors. A dosimetry module that surveys the radiation environment in cruise to Mars and on orbit around it is another part of the instrument.This paper describes the mission and the instrument, its measurement principles and technical characteristics. We perform an initial assessment of our sensitivity and time required to achieve the mission goal. The Martian atmosphere is a parameter that needs to be considered in data analysis of a collimated neutron instrument. This factor is described in a section of this paper. Finally, the first data accumulated during cruise to Mars is presented.  相似文献   
866.
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000–2300 cm?1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89–1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid’s surface.  相似文献   
867.
DNA damages and its repair of cultured WI38 human fibroblast cells and T98G human glioblastoma cells were studied by exposing to carbon ion beams of HIMAC accelerator. The exposed cells were incubated at 37 °C for appropriate intervals and the damages were analyzed by alkaline comet assay and quantitative RT-PCR with p53 mRNA Highly inhomogeneous DNA damages were observed among the electrophoretic cell images of the comet assay. The degree of the damages was analyzed semi-quantitatively by using the Comet Index. The damaged fraction of WI38 cells was 85% immediately after 4 Gy (100 keV/μm) irradiation and decreased to 50% after 120 min. incubation indicating a repair of cell DNA. Time dependent p53 gene expression was also analyzed by the quantitative RT-PCR method.  相似文献   
868.
The development of sea state monitoring from polar-orbiting satellites has recently moved away from the concept of single, multi-sensor platform such as ERS-2, Topex/Poseidon or ENVISAT towards the design of a system that would allow frequent updates from a constellation of small satellites equipped with special-purpose radar altimeters. This new system, called GANDER for Global Altimeter Network Designed to Evaluate Risk, has attracted significant support from a number of important customer segments including the military.

This paper details the design of an altimeter for a Surrey small satellite, and illustrates the major system trade-offs that need to be made. Critical to the viability of the mission will be the development of a radar altimeter capable of operating successfully on a small satellite bus, within a limited volume and power budget. The mission design presents a number of key technological challenges, in order to permit a physically small antenna to be employed, and to minimise the pulse power. This can be achieved by advanced techniques, such as the delay Doppler altimeter concept, which emphasises the needs for high-speed on-board signal processing, phase linearity and pulse-to-pulse phase coherency.

The system design for the GANDER constellation is also described, illustrating how it not only offers a means for maritime disaster mitigation, but also can reduce shipping cost and time.  相似文献   

869.
The purpose of the present paper is to describe the observations of the variations in the parameters of HF radio waves propagating through the ionosphere when the action of the super typhoon Hagibis on 6–13 October 2019 occurred. The observations have been made with the Harbin Engineering University (the People's Republic of China) multi-frequency multiple path radio system involving the software-defined technology. The action of the super typhoon has been shown to be accompanied by enhanced atmospheric wave activity acting to generate wave processes with periods of 10 to 120 min. Coupling in the atmosphere–upper-atmosphere–ionosphere system has been confirmed to be carried out with atmospheric gravity waves. The ionosphere underwent the greatest impact on those days when the supertyphoon had maximum energy, on 8, 10, and especially 9 October 2019, and when it was found to be in an ~2,500–3,000-km distance range from the propagation path midpoints. Under the action of wave processes, the height of the reflection region was observed to oscillate within the ±(30–90 km) limits. The amplitude of the quasi-periodic variations in the ionospheric F-region electron density was estimated to be 10–12% for periods of ~20 min, and 30–60% for periods of ~60–120 min. The joint action of the dusk terminator and the supertyphoon has been confirmed to enhance wave activity in the ionosphere. Similar effects for the dawn terminator have not been detected.  相似文献   
870.
A novel computational model for analyzing the airship’s transient thermal performance under different environmental conditions was developed. Radiative heat transfer and natural convection inside the airship were modeled using the control volume method. The Semi-Implicit Method aiming at the Pressure-Linked Equations algorithm was adopted to solve the control equations. Such approach was able to take into account the solar irradiative heat flux, the infrared radiation at different locations, and the convection both inside and outside the airship. The simulation results, showing the detailed distributions of temperature and velocity on the envelope and inside the airship, were in good agreement with the experimental measurements. The influences of solar position and material radiative properties on temperature distribution, as well as natural convective flow inside airship, were further simulated and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号