全文获取类型
收费全文 | 7511篇 |
免费 | 51篇 |
国内免费 | 14篇 |
专业分类
航空 | 3418篇 |
航天技术 | 2670篇 |
综合类 | 35篇 |
航天 | 1453篇 |
出版年
2021年 | 83篇 |
2019年 | 50篇 |
2018年 | 161篇 |
2017年 | 111篇 |
2016年 | 118篇 |
2015年 | 55篇 |
2014年 | 190篇 |
2013年 | 232篇 |
2012年 | 228篇 |
2011年 | 343篇 |
2010年 | 245篇 |
2009年 | 357篇 |
2008年 | 426篇 |
2007年 | 234篇 |
2006年 | 170篇 |
2005年 | 216篇 |
2004年 | 208篇 |
2003年 | 227篇 |
2002年 | 163篇 |
2001年 | 247篇 |
2000年 | 138篇 |
1999年 | 178篇 |
1998年 | 212篇 |
1997年 | 119篇 |
1996年 | 192篇 |
1995年 | 218篇 |
1994年 | 208篇 |
1993年 | 133篇 |
1992年 | 169篇 |
1991年 | 55篇 |
1990年 | 59篇 |
1989年 | 156篇 |
1988年 | 69篇 |
1987年 | 61篇 |
1986年 | 71篇 |
1985年 | 200篇 |
1984年 | 160篇 |
1983年 | 123篇 |
1982年 | 134篇 |
1981年 | 229篇 |
1980年 | 55篇 |
1979年 | 48篇 |
1978年 | 54篇 |
1977年 | 46篇 |
1975年 | 53篇 |
1974年 | 40篇 |
1973年 | 34篇 |
1972年 | 36篇 |
1971年 | 37篇 |
1970年 | 40篇 |
排序方式: 共有7576条查询结果,搜索用时 15 毫秒
641.
G.L. Smith K.J. Priestley N.G. Loeb B.A. Wielicki T.P. Charlock P. Minnis D.R. Doelling D.A. Rutan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The Clouds and Earth Radiant Energy System (CERES) project’s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers. 相似文献
642.
643.
Further experimental studies of blast wave initiated cylindrical heterogeneous (liquid fuel drops, gas oxidizer) detonation waves are described. A pie-shaped shock tube, used for these studies, was altered in certain ways so as to improve the modeling of cylindrical waves. These modifications, along with some operational aspects, are briefly discussed. The breech of the facility, where the blast wave is generated by an explosive, became distorted with usage. Results are presented which show that lower detonation velocities are realized with the damaged breech (other conditions being the same). A photographic and pressure switch wave time of arrival study was made to ascertain the wave shape. Photographs are shown which show that the waves, blast as well as detonation, are close to cylindrical. However, in some cases there is appreciable distortion of the wave front by debris ahead of the wave. Presumably this debris comes from the blasting cap used to ignite the condensed explosive. A series of experiments was conducted using kerosene drops of 388 μm diameter dispersed in air through use of a large number of hypodermic needles. Radial fuel void regions were established by cutting off the fuel flow to a number of needles. Preliminary results relating to the effect of the size of the cloud gap on detonation velocity, quenching, and the initiator energy levels required for detonation are discussed. 相似文献
644.
Chien S. Knight R. Stechert A. Sherwood R. Rabideau G. 《Aerospace and Electronic Systems Magazine, IEEE》2009,24(1):23-30
An autonomous spacecraft must balance long-term and short-term considerations. It must perform purposeful activities that ensure long-term science and engineering goals are achieved and ensure that it maintains positive resource margins. This requires planning in advance to avoid a series of shortsighted decisions that can lead to failure. However, it must also respond in a timely fashion to a somewhat dynamic and unpredictable environment. Thus, in terms of high-level, goal-oriented activity, spacecraft plans must often be modified due to fortuitous events such as early completion of observations and setbacks such as failure to acquire a guidestar for a science observation. This describes an integrated planning and execution architecture that supports continuous modification and updating of a current working plan in light of a changing operating context. 相似文献
645.
F.B. Rizzato A.C.-L. Chian M.V. Alves R. Erichsen S.R. Lopes G.I. de Oliveira R. Pakter E.L. Rempel 《Space Science Reviews》2003,107(1-2):507-514
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation
of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from
the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency
driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence
of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
646.
Nicholas Achilleos Nicolas André Xochitl Blanco-Cano Pontus C. Brandt Peter A. Delamere Robert Winglee 《Space Science Reviews》2015,187(1-4):229-299
The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed. 相似文献
647.
M. C. De Sanctis M. T. Capria A. Coradini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(12):2519-2525
Comet 19P/Borrelly was observed by Deep Space One spacecraft on September 22, 2001 (Soderblom et al., 2002).The DS1 images show a very dark and elongate nucleus with a complex topography; the IR spectra show a strong red-ward slope consistent with a very hot and dry surface (345K to 300K). During DS1 encounter the comet coma was dominated by a prominent jet but most of the comet was inactive, confirming the Earth-based observations that <10% of the surface is actively sublimating. We have developed a thermal evolution model of comet PBorrelly, using a numerical code that is able to solve the heat conduction and gas diffusion equations at the same time across an idealized spherical nucleus ( De Sanctis et al., 1999, 2000; Capria et al., 2000; Coradini et al., 1997a,b). The comet nucleus is composed by water, volatiles ices and dust in different proportions. The refractory component is made by grains that are embedded in the icy matrix. The code is able to account for the dust release, contributing to the dust flux, and the formation of dust mantles on the comet surface. The model was applied to a cometary nucleus with the estimated physical and dynamical characteristics of P/Borrelly in order to infer the status and activity level of a body on such an orbit during the DS1 observation. The comet gas flux, differentiation and thermal behavior were simulated and reproduced. The model results are in good agreement with the DS1 flyby results and the ground based observations, in terms of activity, dust coverage and temperatures of the surface. 相似文献
648.
A. Aran B. Sanahuja D. Lario 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2333-2338
We present a preliminary version of a potential tool for real time proton flux prediction which provides proton flux profiles and cumulative fluence profiles at 0.5 and 2 MeV of solar energetic particle events, from their onset up to the arrival of the interplanetary shock at the spacecraft position (located at 1 or 0.4 AU). Based on the proton transportation model by Lario et al. [Lario, D., Sanahuja, B., Heras, A.M. Energetic particle events: efficiency of interplanetary shocks as 50 keV E < 100 MeV proton accelerators. Astrophys. J. 509, 415–434, 1998] and the magnetohydrodynamic shock propagation model of Wu et al. [Wu, S.T., Dryer, M., Han, S.M. Non-planar MHD model for solar flare-generated disturbances in the Heliospheric equatorial plane. Sol. Phys. 84, 395–418, 1983], we have generated a database containing “synthetic” profiles of the proton fluxes and cumulative fluences of 384 solar energetic particle events. We are currently validating the applicability of this code for space weather forecasting by comparing the resulting “synthetic” flux profiles with those of several real events. 相似文献
649.
John A. Arredondo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):111-121
In this paper we find the families of relative equilibria for the three body problem in the plane, when the interaction between the bodies is given by a quasi-homogeneous potential. The number of the relative equilibria depends on the values of the masses and on the size of the system, measured by the moment of inertia. 相似文献
650.
We present a brief introduction to the essential physics of coronal mass ejections as well as a review of theory and models
of CME initiation, solar energetic particle (SEP) acceleration, and shock propagation. A brief review of the history of CME
models demonstrates steady progress toward an understanding of CME initiation, but it is clear that the question of what initiates
CMEs has still not been solved. For illustration, we focus on the flux cancellation model and the breakout model. We contrast
the similarities and differences between these models, and we examine how their essential features compare with observations.
We review the generation of shocks by CMEs. We also outline the theoretical ideas behind the origin of a gradual SEP event
at the evolving CME-driven coronal/interplanetary shock and the origin of “impulsive” SEP events at flare sites of magnetic
reconnection below CMEs. We argue that future developments in models require focused study of “campaign events” to best utilize
the wealth of available CME and SEP observations. 相似文献