首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6942篇
  免费   277篇
  国内免费   290篇
航空   3407篇
航天技术   2495篇
综合类   238篇
航天   1369篇
  2022年   42篇
  2021年   82篇
  2020年   28篇
  2019年   55篇
  2018年   132篇
  2017年   103篇
  2016年   92篇
  2015年   77篇
  2014年   195篇
  2013年   244篇
  2012年   238篇
  2011年   321篇
  2010年   268篇
  2009年   334篇
  2008年   399篇
  2007年   249篇
  2006年   192篇
  2005年   230篇
  2004年   209篇
  2003年   250篇
  2002年   168篇
  2001年   229篇
  2000年   184篇
  1999年   206篇
  1998年   221篇
  1997年   178篇
  1996年   201篇
  1995年   247篇
  1994年   219篇
  1993年   141篇
  1992年   174篇
  1991年   81篇
  1990年   81篇
  1989年   144篇
  1988年   60篇
  1987年   47篇
  1986年   68篇
  1985年   178篇
  1984年   133篇
  1983年   106篇
  1982年   133篇
  1981年   159篇
  1980年   45篇
  1979年   30篇
  1978年   37篇
  1977年   36篇
  1976年   29篇
  1975年   26篇
  1974年   34篇
  1970年   27篇
排序方式: 共有7509条查询结果,搜索用时 375 毫秒
101.
Kicza M  Erickson K  Trinh E 《Acta Astronautica》2003,53(4-10):659-663
Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output.  相似文献   
102.
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles.  相似文献   
103.
雷达与ESM相关算法综述   总被引:5,自引:0,他引:5  
在比较雷达和ESM(ElectronicSupportMeasurements)这两种传感器特点的基础上,分析了雷达与ESM相关的特点,介绍了统计方法、模糊方法和优化方法等五种雷达与ESH相关算法,并对这些算法进行了评述。  相似文献   
104.
关于用弹性环加强的孔口应力分析问题,本文给出了一个新的分析方法——链杆法。即假定环和板之间在孔口用链杆来联系,然后用力法求出链杆的约束力,进而可确定板的应力和环的内力。将本文结果和萨文的结果作了比较,两者基本一致,说明了链杆法的有效性。它的优点是直观、方便,计算较简单,适用面较广。  相似文献   
105.
Attitude control techniques for the pointing and stabilization of very large, inherently flexible spacecraft systems are investigated. The attitude dynamics and control of a long, homogeneous flexible beam whose center of mass is assumed to follow a circular orbit is analyzed. In this study, first order effects of gravity-gradient are included, whereas external perturbations and related orbital station keeping maneuvers are neglected. A mathematical model which describes the system deflections within the orbital plane has been developed by treating the beam as having a maximum of three discretized mass particles connected by massless, elastic structural elements. The uncontrolled dynamics of this system are simulated and, in addition, the effects of the control devices are considered. The concept of distributed modal control, which provides a means for controlling a system mode independently of all other modes, is examined. The effect of varying the number of modes in the model as well as the number and location of the control devices are also considered.  相似文献   
106.
本文提出一种实用的高速数据采集记录系统的设计方案,介绍该系统中各主要模块的功能与设计思路,讨论高速数据存储模块的设计,控制调度流程与高速数字电路设计相关处理方法。针对高速与大容量的数据采集特点,提出用存储速率受限的FLASH芯片来实现高速、大容量数据采集记录的设计方法。  相似文献   
107.
本文论述了正互反矩阵一致性的充要条件,并给出了证明.  相似文献   
108.
Using both analytical and numerical models of the collisionless anisotropic current sheet generated by the impinging flows of transient ions, we have studied the self-consistent solutions taking the plasma trapped in the sheet into account. It is demonstrated that there exists a limited window in the space of system parameters where self-consistent solutions can exist. When the density of the quasi-trapped plasma is sufficiently large, a redistribution of the total current can be a cause of the sheet decay, when the local current of the trapped particles compensate (totally or in part) the main current in the center and at the edges of the sheet, while the total current generated by ions on the trapped trajectories vanishes.  相似文献   
109.
Walsh MM 《Astrobiology》2004,4(4):429-437
Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.  相似文献   
110.
At a time when scientific and commercial interest in the Moon is being reinvigorated it is becoming fashionable for ordinary individuals to ‘buy’ plots on the lunar surface, with the ‘vendors’ arguing that an absence of specific prohibition of individual private activity in space makes such action legal. It is therefore time for the legal community to address this situation by investigating just how legal such activity is—and bringing their findings to the attention of governments. This can be done through an examination of the relationship between national law and international space law, of the provisions of international space law—especially Article 2 of the Outer Space Treaty—and by answering any claims to private ownership of immovable property. Aside from the fact that individuals appear to be being duped, the pursuit of property claims on the Moon could impede future activities aimed at benefiting society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号