首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   0篇
航空   89篇
航天技术   27篇
航天   49篇
  2021年   3篇
  2019年   2篇
  2018年   11篇
  2017年   7篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   3篇
  2009年   7篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   12篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1989年   1篇
  1987年   5篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1969年   1篇
  1968年   5篇
  1967年   6篇
  1966年   7篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
121.
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.  相似文献   
122.
Cratering Chronology and the Evolution of Mars   总被引:3,自引:0,他引:3  
Results by Neukum et al. (2001) and Ivanov (2001) are combined with crater counts to estimate ages of Martian surfaces. These results are combined with studies of Martian meteorites (Nyquist et al., 2001) to establish a rough chronology of Martian history. High crater densities in some areas, together with the existence of a 4.5 Gyr rock from Mars (ALH84001), which was weathered at about 4.0 Gyr, affirm that some of the oldest surfaces involve primordial crustal materials, degraded by various processes including megaregolith formation and cementing of debris. Small craters have been lost by these processes, as shown by comparison with Phobos and with the production function, and by crater morphology distributions. Crater loss rates and survival lifetimes are estimated as a measure of average depositional/erosional rate of activity.We use our results to date the Martian epochs defined by Tanaka (1986). The high crater densities of the Noachian confine the entire Noachian Period to before about 3.5 Gyr. The Hesperian/Amazonian boundary is estimated to be about 2.9 to 3.3 Gyr ago, but with less probability could range from 2.0 to 3.4 Gyr. Mid-age dates are less well constrained due to uncertainties in the Martian cratering rate. Comparison of our ages with resurfacing data of Tanaka et al. (1987) gives a strong indication that volcanic, fluvial, and periglacial resurfacing rates were all much higher in approximately the first third of Martian history. We estimate that the Late Amazonian Epoch began a few hundred Myr ago (formal solutions 300 to 600 Myr ago). Our work supports Mariner 9 era suggestions of very young lavas on Mars, and is consistent with meteorite evidence for Martian igneous rocks 1.3 and 0.2 – 0.3 Gyr old. The youngest detected Martian lava flows give formal crater retention ages of the order 10 Myr or less. We note also that certain Martian meteorites indicate fluvial activity younger than the rock themselves, 700 Myr in one case, and this is supported by evidence of youthful water seeps. The evidence of youthful volcanic and aqueous activity, from both crater-count and meteorite evidence, places important constraints on Martian geological evolution and suggests a more active, complex Mars than has been visualized by some researchers.  相似文献   
123.
Space Science Reviews - Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are...  相似文献   
124.
Aymeric Spiga  Don Banfield  Nicholas A. Teanby  François Forget  Antoine Lucas  Balthasar Kenda  Jose Antonio Rodriguez Manfredi  Rudolf Widmer-Schnidrig  Naomi Murdoch  Mark T. Lemmon  Raphaël F. Garcia  Léo Martire  Özgür Karatekin  Sébastien Le Maistre  Bart Van Hove  Véronique Dehant  Philippe Lognonné  Nils Mueller  Ralph Lorenz  David Mimoun  Sébastien Rodriguez  Éric Beucler  Ingrid Daubar  Matthew P. Golombek  Tanguy Bertrand  Yasuhiro Nishikawa  Ehouarn Millour  Lucie Rolland  Quentin Brissaud  Taichi Kawamura  Antoine Mocquet  Roland Martin  John Clinton  Éléonore Stutzmann  Tilman Spohn  Suzanne Smrekar  William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.  相似文献   
125.
We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.  相似文献   
126.
127.
Ambiguity Resolution in Interferometry   总被引:3,自引:0,他引:3  
A comprehensive theory of interferometry from a system viewpoint with particular emphasis on the ambiguity resolution problem is developed. The derived error equations include contributions from all system uncertainties, i.e., phase measurement, frequency, and element phase center position errors in three dimensions. The direction-of-arrival errors are inversely proportional to the interferometer baseline and it is customary to make the baseline large enough to meet the accuracy requirements. A system with a baseline greater than a half-wavelength results in the well known direction-of-arrival ambiguity problem with the addition of a third element to each baseline being a common method for resolving the ambiguity. It is shown that contrary to previous thinking there are many equally optimal positions for adding the third element to resolve the ambiguity. In addition, it is shown how the measurement made to resolve the ambiguity can also be applied to increase the accuracy of the angle-of-arrival measurement. A central result is the derivation of expressions specifying the probability of correct resolution of ambiguities as a function of system parameters and system errors. Moreover the concept of an acceptance criterion designed to reduce processing of erroneous measurements is developed. Narrowing the criterion reduces the percentage of data accepted for processing, but increases the probability of correct ambiguity resolution. This is analogous to the relationship between the probability of detection and the probability of false alarm in radar theory.  相似文献   
128.
A Gamma-Ray and Neutron Spectrometer (GRNS) instrument has been developed as part of the science payload for NASA’s Discovery Program mission to the planet Mercury. Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) launched successfully in 2004 and will journey more than six years before entering Mercury orbit to begin a one-year investigation. The GRNS instrument forms part of the geochemistry investigation and will yield maps of the elemental composition of the planet surface. Major elements include H, O, Na, Mg, Si, Ca, Ti, Fe, K, and Th. The Gamma-Ray Spectrometer (GRS) portion detects gamma-ray emissions in the 0.1- to 10-MeV energy range and achieves an energy resolution of 3.5 keV full-width at half-maximum for 60Co (1332 keV). It is the first interplanetary use of a mechanically cooled Ge detector. Special construction techniques provide the necessary thermal isolation to maintain the sensor’s encapsulated detector at cryogenic temperatures (90 K) despite the intense thermal environment. Given the mission constraints, the GRS sensor is necessarily body-mounted to the spacecraft, but the outer housing is equipped with an anticoincidence shield to reduce the background from charged particles. The Neutron Spectrometer (NS) sensor consists of a sandwich of three scintillation detectors working in concert to measure the flux of ejected neutrons in three energy ranges from thermal to ∼7 MeV. The NS is particularly sensitive to H content and will help resolve the composition of Mercury’s polar deposits. This paper provides an overview of the Gamma-Ray and Neutron Spectrometer and describes its science and measurement objectives, the design and operation of the instrument, the ground calibration effort, and a look at some early in-flight data.  相似文献   
129.
The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables, and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For example, the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for ascent vehicles and surface propulsive hoppers. While concepts and even laboratory work on evaluating and developing ISRU techniques such as oxygen extraction from lunar regolith have been going on since before the Apollo 11 Moon landing, no ISRU system has ever flown in space, and only recently have ISRU technologies been developed at a scale and at a system level that is relevant to actual robotic and human mission applications. Because ISRU hardware and systems have never been demonstrated or utilized before on robotic or human missions, architecture and mission planners and surface system hardware developers are hesitant to rely on ISRU products and services that are critical to mission and system implementation success. To build confidence in ISRU systems for future missions and assess how ISRU systems can best influence and integrate with other surface system elements, NASA, with international partners, are performing analog field tests to understand how to take advantage of ISRU capabilities and benefits with the minimum of risk associated with introducing this game-changing approach to exploration. This paper will describe and review the results of four analog field tests (Moses Lake in 6/08, Mauna Kea in 11/08, Flagstaff in 9/09, and Mauna Kea in 1/10) that have begun the process of integrating ISRU into robotic and human exploration systems and missions, and propose future ISRU-related analog field test activities that can be performed in collaboration with non-US space agencies.  相似文献   
130.
Over recent times there has been a rise in the number of objects placed into Earth orbit. With various countries licensing a number of large constellations, the orbital population is set to increase dramatically. A significant number of technical advances have facilitated this and, in the UK and elsewhere, this has been matched by the updating of legislation and an increased policy focus on the need for increased space surveillance and tracking. The rise of large constellations coupled with an increasing number of experimental techniques such as active debris removal or on-orbit servicing procedures means that establishing fault will be crucial if litigation is to be successful. In doing this, any legal proceedings will look at both norms of behaviour, deviation from which will point towards fault and the types and standard of evidence that will be required.This paper will outline these problems in detail. It will be proposed that what is required to map out the contours of liability are both codification of the norms for satellite operations and clarity on protocols for evidence gathering in cases where fault may be contested in orbital operations. This discussion will identify that a way in which this could be achieved is by the use of “space law games”. These are simulations, similar to military war games, in which fictional scenarios could highlight some of the key legal issues that might need to be dealt with. The paper will outline some of the ways in which the law games might work and pose questions as to what data and other considerations will be needed to make such simulations meaningful.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号