首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   1篇
航空   42篇
航天技术   32篇
航天   37篇
  2021年   4篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   13篇
  2012年   5篇
  2011年   7篇
  2010年   8篇
  2009年   4篇
  2008年   9篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1993年   1篇
  1992年   2篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1968年   2篇
  1966年   2篇
排序方式: 共有111条查询结果,搜索用时 328 毫秒
91.
92.
固体火箭发动机的声学分析及燃烧稳定性预估   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种预估固体火箭发动机燃烧稳定性的方法。文中着重研究了燃烧室内腔声场的有限元数值分析问题,并应用声学有限元素法对一个二维轴对称装药发动机燃烧室内腔进行了固有频率及固有振型计算。随后,在声学分析的基础上对该发动机做了燃烧稳定性预估。其结果与多次试车的结果一致。最后还就声学分析的验证,减少机时和内存,微粒尺寸的确定,预估方法及计算程序的通用性等问题进行了讨论。  相似文献   
93.
94.
The amount of emergence and submergence of magnetized plasma and the horizontal motion of the footpoints of flux tubes might be crucial for the dynamics of the solar atmosphere. Although the rate of flux emergence and submergence can be observationally determined near the polarity inversion line (Chae et al., 2004), the same is not true for regions away from the PIL. Also, the horizontal motions cannot be directly measured in the solar photosphere. In this sense, the evolution of the photospheric magnetic field provides valuable information which can be used to estimate photospheric plasma flows since magnetic field and plasma are closely associated (frozen-in-condition). We used three methods to estimate the photospheric plasma motion from magnetic field observations. The methods were applied to photospheric vector magnetic field data of active region NOAA 9077, observed by the Huairou Solar Observing Station (HSOS) of the National Astronomical Observatories of China before and after the ‘Bastille Day’ flare on July 13th and 14th, 2000.  相似文献   
95.
内燃机和变速箱是汽车行业的关键件.然而,内燃机和变速箱组件涉及大量复杂的机械加工流程,其复杂性与精密程度要求采用广泛多样的加工工艺.如果说制造业以生产率最大化为目标,则每项工艺必须赋予最佳的刀具解决方案.  相似文献   
96.
This paper reviews the evolution of CEOS (Committee on Earth Observations Satellites) from the early days, where participating agencies were primarily concerned with compatibility issues and space programs were chiefly technology-driven, up to the present, where complementarity of satellite programs and fulfillment of final user needs are the main goals being pursued.It also analyzes the favorable conditions that allowed continuity and evolution of the efforts carried by the Committee, in both the technical and the administrative areas, and granted the results achieved so far.Finally, it addresses the expectations of the Committee about the cooperation and interaction with other international bodies, with national governments and with the private sector, with the final aim of maximizing the benefits that Earth Observations can provide for Science and for the well-being of humanity, in particular the people of less-favored regions of the earth.  相似文献   
97.
The well-known Lagrangian points that appear in the planar restricted three-body problem are very important for astronautical applications. They are five points of equilibrium in the equations of motion, what means that a particle located at one of those points with zero velocity will remain there indefinitely. The collinear points (L1, L2 and L3) are always unstable and the triangular points (L4 and L5) are stable in the present case studied (Earth–Sun system). They are all very good points to locate a space-station, since they require a small amount of ΔV (and fuel), the control to be used, for station-keeping. The triangular points are especially good for this purpose, since they are stable equilibrium points.In this paper, the planar restricted four-body problem applied to the Sun–Earth–Moon–Spacecraft is combined with numerical integration and gradient methods to solve the two-point boundary value problem. This combination is applied to the search of families of transfer orbits between the Lagrangian points and the Earth, in the Earth–Sun system, with the minimum possible cost of the control used. So, the final goal of this paper is to find the magnitude of the two impulses to be applied in the spacecraft to complete the transfer: the first one when leaving/arriving at the Lagrangian point and the second one when arriving/living at the Earth.The dynamics given by the restricted four-body problem is used to obtain the trajectory of the spacecraft, but not the position of the equilibrium points. Their position is taken from the restricted three-body model. The goal to use this model is to evaluate the perturbation of the Sun in those important trajectories, in terms of fuel consumption and time of flight. The solutions will also show how to apply the impulses to accomplish the transfers under this force model.The results showed a large collection of transfers, and that there are initial conditions (position of the Sun with respect to the other bodies) where the force of the Sun can be used to reduce the cost of the transfers.  相似文献   
98.
99.
SWAN is the first space instrument dedicated to the monitoring of the latitude distribution of the solar wind by the Lyman alpha method. The distribution of interstellar H atoms in the solar system is determined by their destruction during ionization charge-exchange with solar wind protons. Maps of sky Ly-α emission have been recorded regularly since launch. The upwind maximum emission region deviates strongly from the pattern that would be expected from a solar wind that is constant with latitude. It is divided in two lobes by a depression aligned with the solar equatorial plane, called the Lyman-alpha groove, due to enhanced ionization along the neutral sheet where the slow and dense solar wind is concentrated. The groove (or the anisotropy) is more pronounced in 1997 than in 1996, but it then decreases between 1997 and 1998. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
100.
The primary goal of the Genesis Mission is to collect solar wind ions and, from their analysis, establish key isotopic ratios that will help constrain models of solar nebula formation and evolution. The ratios of primary interest include 17O/16O and 18O/16O to ±0.1%, 15N/14N to ±1%, and the Li, Be, and B elemental and isotopic abundances. The required accuracies in N and O ratios cannot be achieved without concentrating the solar wind and implanting it into low-background target materials that are returned to Earth for analysis. The Genesis Concentrator is designed to concentrate the heavy ion flux from the solar wind by an average factor of at least 20 and implant it into a target of ultra-pure, well-characterized materials. High-transparency grids held at high voltages are used near the aperture to reject >90% of the protons, avoiding damage to the target. Another set of grids and applied voltages are used to accelerate and focus the remaining ions to implant into the target. The design uses an energy-independent parabolic ion mirror to focus ions onto a 6.2 cm diameter target of materials selected to contain levels of O and other elements of interest established and documented to be below 10% of the levels expected from the concentrated solar wind. To optimize the concentration of the ions, voltages are constantly adjusted based on real-time solar wind speed and temperature measurements from the Genesis ion monitor. Construction of the Concentrator required new developments in ion optics; materials; and instrument testing and handling. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号