首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17568篇
  免费   31篇
  国内免费   124篇
航空   9799篇
航天技术   5172篇
综合类   245篇
航天   2507篇
  2021年   154篇
  2018年   181篇
  2016年   150篇
  2014年   432篇
  2013年   514篇
  2012年   401篇
  2011年   555篇
  2010年   388篇
  2009年   745篇
  2008年   778篇
  2007年   345篇
  2006年   418篇
  2005年   366篇
  2004年   425篇
  2003年   501篇
  2002年   465篇
  2001年   522篇
  2000年   349篇
  1999年   436篇
  1998年   403篇
  1997年   310篇
  1996年   361篇
  1995年   423篇
  1994年   409篇
  1993年   351篇
  1992年   299篇
  1991年   250篇
  1990年   237篇
  1989年   390篇
  1988年   203篇
  1987年   234篇
  1986年   230篇
  1985年   638篇
  1984年   515篇
  1983年   398篇
  1982年   487篇
  1981年   605篇
  1980年   243篇
  1979年   183篇
  1978年   189篇
  1977年   145篇
  1976年   155篇
  1975年   186篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
651.
A Twin-CME Scenario for Ground Level Enhancement Events   总被引:2,自引:0,他引:2  
Ground Level Enhancement (GLEs) events are extreme Solar Energetic Particle (SEP) events. Protons in these events often reach ~GeV/nucleon. Understanding the underlying particle acceleration mechanism in these events is a major goal for Space Weather studies. In Solar Cycle 23, a total of 16 GLEs have been identified. Most of them have preceding CMEs and in-situ energetic particle observations show some of them are enhanced in ICME or flare-like material. Motivated by this observation, we discuss here a scenario in which two CMEs erupt in sequence during a short period of time from the same Active Region (AR) with a pseudo-streamer-like pre-eruption magnetic field configuration. The first CME is narrower and slower and the second CME is wider and faster. We show that the magnetic field configuration in our proposed scenario can lead to magnetic reconnection between the open and closed field lines that drape and enclose the first CME and its driven shock. The combined effect of the presence of the first shock and the existence of the open close reconnection is that when the second CME erupts and drives a second shock, one finds both an excess of seed population and an enhanced turbulence level at the front of the second shock than the case of a single CME-driven shock. Therefore, a more efficient particle acceleration will occur. The implications of our proposed scenario are discussed.  相似文献   
652.
653.
The ChemCam instrument on the Mars Science Laboratory rover Curiosity will use laser-induced breakdown spectroscopy (LIBS) to analyze major and minor element chemistry from sub-millimeter spot sizes, at ranges of ~1.5–7?m. To interpret the emission spectra obtained, ten calibration standards will be carried on the rover deck. Graphite, Ti?metal, and four glasses of igneous composition provide primary, homogeneous calibration targets for the laser. Four granular ceramic targets have been added to provide compositions closer to soils and sedimentary materials like those expected at the Gale Crater field site on Mars. Components used in making these ceramics include basalt, evaporite, and phyllosilicate materials that approximate the chemical compositions of detrital and authigenic constituents of clastic and evaporite sediments, including the elevated sulfate contents present in many Mars sediments and soils. Powdered components were sintered at low temperature (800?°C) with a small amount (9?wt.%) of lithium tetraborate flux to produce ceramics that retain volatile sulfur yet are durable enough for the mission. The ceramic targets are more heterogeneous than the pure element and homogenous glass standards but they provide standards with compositions more similar to the sedimentary rocks that will be Curiosity’s prime targets at Gale Crater.  相似文献   
654.
R. P. Lin 《Space Science Reviews》2011,159(1-4):421-445
RHESSI measurements relevant to the fundamental processes of energy release and particle acceleration in flares are summarized. RHESSI??s precise measurements of hard X-ray continuum spectra enable model-independent deconvolution to obtain the parent electron spectrum. Taking into account the effects of albedo, these show that the low energy cut-off to the electron power-law spectrum is typically ?tens of keV, confirming that the accelerated electrons contain a large fraction of the energy released in flares. RHESSI has detected a high coronal hard X-ray source that is filled with accelerated electrons whose energy density is comparable to the magnetic-field energy density. This suggests an efficient conversion of energy, previously stored in the magnetic field, into the bulk acceleration of electrons. A new, collisionless (Hall) magnetic reconnection process has been identified through theory and simulations, and directly observed in space and in the laboratory; it should occur in the solar corona as well, with a reconnection rate fast enough for the energy release in flares. The reconnection process could result in the formation of multiple elongated magnetic islands, that then collapse to bulk-accelerate the electrons, rapidly enough to produce the observed hard X-ray emissions. RHESSI??s pioneering ??-ray line imaging of energetic ions, revealing footpoints straddling a flare loop arcade, has provided strong evidence that ion acceleration is also related to magnetic reconnection. Flare particle acceleration is shown to have a close relationship to impulsive Solar Energetic Particle (SEP) events observed in the interplanetary medium, and also to both fast coronal mass ejections and gradual SEP events. New instrumentation to provide the high sensitivity and wide dynamic range hard X-ray and ??-ray measurements, plus energetic neutral atom (ENA) imaging of SEPs above ??2 R??, will enable the next great leap forward in understanding particle acceleration and energy release is large solar eruptions??solar flares and associated fast coronal mass ejections (CMEs).  相似文献   
655.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   
656.
ARTEMIS Mission Design   总被引:2,自引:0,他引:2  
The ARTEMIS mission takes two of the five THEMIS spacecraft beyond their prime mission objectives and reuses them to study the Moon and the lunar space environment. Although the spacecraft and fuel resources were tailored to space observations from Earth orbit, sufficient fuel margins, spacecraft capability, and operational flexibility were present that with a circuitous, ballistic, constrained-thrust trajectory, new scientific information could be gleaned from the instruments near the Moon and in lunar orbit. We discuss the challenges of ARTEMIS trajectory design and describe its current implementation to address both heliophysics and planetary science objectives. In particular, we explain the challenges imposed by the constraints of the orbiting hardware and describe the trajectory solutions found in prolonged ballistic flight paths that include multiple lunar approaches, lunar flybys, low-energy trajectory segments, lunar Lissajous orbits, and low-lunar-periapse orbits. We conclude with a discussion of the risks that we took to enable the development and implementation of ARTEMIS.  相似文献   
657.
热致非互易相移的存在影响了光纤陀螺的工作精度.通过对热致非互易相移的分析,把握了该相移与光纤陀螺温度特性的关系.在此基础上,进行了光纤陀螺的温度实验与仿真分析.结果表明,仿真分析光纤陀螺的整体温度分布是可行的;温度实验与仿真分析相结合的办法有助于光纤陀螺温度特性的把握.  相似文献   
658.
企业级数字化检测平台所力求实现的是,打破测量的孤岛,利用网络技术和企业先进的设计、制造与生产管理系统,实现不同环节、不同类型测量系统的数据以信息整合,以求更加紧密与企业实际相融合。  相似文献   
659.
喷流对飞机尾流涡影响的试验研究   总被引:4,自引:0,他引:4  
飞机产生的尾流涡,特别是大尺度的翼尖涡,对尾随其后的飞行器是非常有害的,本文旨在探索利用飞机发动机产生的喷流加速尾流涡消亡的方法。试验采用简化的飞机模型(有尾翼),建立了包含一对翼尖涡及一对反向旋转的尾翼涡(通过以负迎角安装尾翼得到)的4涡尾流系统。在无外来扰动的情况下,不同的尾翼设置下得到的尾翼涡对翼尖涡的作用效果不同,有的能导致翼尖涡提前消亡,有的则不能。考察了不同强度的喷流对不同4涡尾流系统的影响,且作为对比,对无尾翼(2涡系统)及无喷流下的各种情况也分别作了观测。试验在拖曳水槽中进行,运用体视粒子图像测速(SPIV)技术,观测了与模型拖曳方向垂直的、从机翼后缘到下游约45翼展间均布的一系列切面。结果表明:当喷流直接作用于涡时,其效果主要取决于两者之间的初始距离及相对强度;而当喷流作用于整个4涡尾流系统时,其引入的扰动对不同的系统均能起到一定程度的改善作用,这种作用的关键在于利用喷流优化对翼尖涡进行扰动的机制,而不仅仅取决于喷流的强度。  相似文献   
660.
The reflection of oblique shock waves has been the subject of numerous experimental, analytical and numerical studies in the past five decades. In the past six years three reviews have been published on various aspects of shock wave phenomena by Griffith (1981), Bazhenova et al. (1984) and Hornung (1985). However, these reviews were not devoted completely to shock wave reflection phenomena and as such they are more limited in scope than the present review. Furthermore, the developments since these reviews were written suggested a need for an up-to-date comprehensive review. The present review is aimed at describing in detail the entire shock wave reflection phenomenon from a phenomenological point of view. It is divided into three parts. The first is dedicated to the reflection in pseudo-steady flows, e.g., shock tube experiments over straight wedges, the second concentrates on steady flows, e.g., wind tunnel experiments, and the third describes the phenomenon in truly unsteady flows, e.g., shock tube experiment over non-straight wedges, spherical blast wave reflections, etc. In each of these flow patterns, unsolved problems are discussed and future research needs are identified. In order to keep this review within an acceptable size it was decided not to include details of numerical studies. Whenever possible the nomenclature is the one suggested by Ben-Dor and Dewey (1985).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号