全文获取类型
收费全文 | 2273篇 |
免费 | 13篇 |
国内免费 | 2篇 |
专业分类
航空 | 1228篇 |
航天技术 | 831篇 |
综合类 | 13篇 |
航天 | 216篇 |
出版年
2018年 | 25篇 |
2017年 | 23篇 |
2014年 | 24篇 |
2013年 | 48篇 |
2012年 | 28篇 |
2011年 | 59篇 |
2010年 | 47篇 |
2009年 | 57篇 |
2008年 | 126篇 |
2007年 | 38篇 |
2006年 | 32篇 |
2005年 | 46篇 |
2004年 | 69篇 |
2003年 | 72篇 |
2002年 | 37篇 |
2001年 | 55篇 |
2000年 | 49篇 |
1999年 | 27篇 |
1998年 | 75篇 |
1997年 | 53篇 |
1996年 | 62篇 |
1995年 | 69篇 |
1994年 | 85篇 |
1993年 | 51篇 |
1992年 | 69篇 |
1991年 | 29篇 |
1990年 | 33篇 |
1989年 | 70篇 |
1988年 | 24篇 |
1987年 | 29篇 |
1986年 | 51篇 |
1985年 | 87篇 |
1984年 | 54篇 |
1983年 | 61篇 |
1982年 | 57篇 |
1981年 | 68篇 |
1980年 | 34篇 |
1979年 | 27篇 |
1978年 | 25篇 |
1977年 | 24篇 |
1975年 | 24篇 |
1974年 | 24篇 |
1973年 | 24篇 |
1972年 | 21篇 |
1971年 | 31篇 |
1970年 | 17篇 |
1969年 | 25篇 |
1968年 | 18篇 |
1967年 | 20篇 |
1966年 | 19篇 |
排序方式: 共有2288条查询结果,搜索用时 0 毫秒
551.
Margarita Karovska Brian E. Wood John W. Cook Russell A. Howard Guenter E. Brueckner 《Space Science Reviews》1999,87(1-2):219-222
We present the results from a study of the dynamical properties of polar jets in the Sun's polar regions using LASCO C2 coronagraph and EIT observations. In the simplest impulsive acceleration scenarios for jets, gravity is expected to be the dominant force on the jet following the initial acceleration, especially in the Sun's polar regions where the open magnetic fields should not significantly impede the jet's motion. Our analysis shows that although at low heights the kinematics of the jets could be consistent with a gravitational deceleration of the ejected plasma, at higher heights their motions may simply follow the ambient solar wind outflow. If so, the polar jets can be used as tracers of the solar wind in coronal holes. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
552.
H. O. Funsten R. M. Skoug A. A. Guthrie E. A. MacDonald J. R. Baldonado R. W. Harper K. C. Henderson K. H. Kihara J. E. Lake B. A. Larsen A. D. Puckett V. J. Vigil R. H. Friedel M. G. Henderson J. T. Niehof G. D. Reeves M. F. Thomsen J. J. Hanley D. E. George J.-M. Jahn S. Cortinas A. De Los Santos G. Dunn E. Edlund M. Ferris M. Freeman M. Maple C. Nunez T. Taylor W. Toczynski C. Urdiales H. E. Spence J. A. Cravens L. L. Suther J. Chen 《Space Science Reviews》2013,179(1-4):423-484
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance. 相似文献
553.
Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System 总被引:1,自引:0,他引:1
R. C. Anderson L. Jandura A. B. Okon D. Sunshine C. Roumeliotis L. W. Beegle J. Hurowitz B. Kennedy D. Limonadi S. McCloskey M. Robinson C. Seybold K. Brown 《Space Science Reviews》2012,170(1-4):57-75
The Mars Science Laboratory Mission (MSL), scheduled to land on Mars in the summer of 2012, consists of a rover and a scientific payload designed to identify and assess the habitability, geological, and environmental histories of Gale crater. Unraveling the geologic history of the region and providing an assessment of present and past habitability requires an evaluation of the physical and chemical characteristics of the landing site; this includes providing an in-depth examination of the chemical and physical properties of Martian regolith and rocks. The MSL Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem will be the first in-situ system designed to acquire interior rock and soil samples from Martian surface materials. These samples are processed and separated into fine particles and distributed to two onboard analytical science instruments SAM (Sample Analysis at Mars Instrument Suite) and CheMin (Chemistry and Mineralogy) or to a sample analysis tray for visual inspection. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments, Alpha Particle X-Ray Spectrometer (APXS), and the Mars Hand Lens Imager (MAHLI), on rock and soil targets. Finally, there is a Dust Removal Tool (DRT) to remove dust particles from rock surfaces for subsequent analysis by the contact and or mast mounted instruments (e.g. Mast Cameras (MastCam) and the Chemistry and Micro-Imaging instruments (ChemCam)). 相似文献
554.
Li W. Leung H. Yifeng Zhou 《IEEE transactions on aerospace and electronic systems》2004,40(3):824-836
Space and time alignments are the prerequisites for the successful fusion of multiple sensors. A space-time registration model is proposed to estimate the system biases and to perform time synchronization together for mobile radar and electronic support measure (ESM) systems. A space-time registration model for radar and ESM is first developed, and an unscented Kalman filter (UKF) is proposed to estimate the space-time biases and target states simultaneously. The posterior Cramer-Rao bounds (PCRBs) are derived for the proposed UKF registration algorithm for ESM detection probability less than or equal to one. Theoretical analyses are performed to evaluate the accuracy and robustness of the proposed method. Computer simulations show that the UKF registration algorithm is indeed effective and robust for different radar and ESM tracking scenarios. 相似文献
555.
William M. Folkner Véronique Dehant Sébastien Le Maistre Marie Yseboodt Attilio Rivoldini Tim Van Hoolst Sami W. Asmar Matthew P. Golombek 《Space Science Reviews》2018,214(5):100
The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment. 相似文献
556.
Layne CS Lange GW Pruett CJ McDonald PV Merkle LA Mulavara AP Smith SL Kozlovskaya IB Bloomberg JJ 《Acta Astronautica》1998,43(3-6):107-119
The precise neuromuscular control needed for optimal locomotion, particularly around heel strike and toe off, is known to he compromised after short duration (8- to 15-day) space flight. We hypothesized here that longer exposure to weightlessness would result in maladaptive neuromuscular activation during postflight treadmill walking. We also hypothesized that space flight would affect the ability of the sensory-motor control system to generate adaptive neuromuscular activation patterns in response to changes in visual target distance during postflight treadmill walking. Seven crewmembers, who completed 3- to 6-month missions, walked on a motorized treadmill while visually fixating on a target placed 30 cm (NEAR) or 2 m (FAR) from the subject's eyes. Electronic foot switch data and surface electromyography were collected from selected muscles of the right lower limb. Results indicate that the phasic features of neuromuscular activation were moderately affected and the relative amplitude of activity in the tibialis anterior and rectus femoris around toe off changed after space flight. Changes also were evident after space flight in how these muscles adapted to the shift in visual target distance. 相似文献
557.
Lee A.Y. Yu J.W. Kahn P.B. Stoller R.L. 《IEEE transactions on aerospace and electronic systems》2002,38(2):502-514
Preliminary error budgets for the pointing knowledge, control, and stability of the Space Interferometry Mission (SIM) spacecraft are constructed using the specifications of commercial off-the-shelf attitude determination sensors, attitude control actuators, and other spacecraft capabilities that have been demonstrated in past missions. Results obtained indicate that we can meet all the presently known spacecraft pointing requirements. A large number of derived requirements are generated from this study. Examples are specifications on attitude determination sensors, attitude control actuators, minimum settling time after a rest-to-rest spacecraft slew. Preliminary error budgets constructed in this study must be updated to reflect the changing spacecraft design and requirements 相似文献
558.
Peter T. Gilruth Satya Kalluri Jon W. Robinson John Townshend Francis Lindsay Paul Davis Barron J. Orr 《Space Policy》2006,22(3):165-175
Demonstrating performance of the applications of Earth observation satellite-based science data products and services is increasingly a requirement of government research agencies. We present efforts from the NASA-funded Earth Observing System Data and Information System's Synergy Project to measure performance in the development of applications from NASA research and development projects. We summarize challenges in monitoring performance and share our experience in evolving metrics over a 5-year project life. We demonstrate how to adapt project management processes and metrics from the information technology (IT) industry to Earth observation applications research and development. A roadmap for adapting IT processes and developing metrics and examples of quantitative and qualitative metrics are provided. Our findings suggest that designing and implementing these IT metrics will enhance project success, as defined by the degree of penetration of NASA products into the user community and level of non-NASA funding secured. 相似文献
559.
Exponential mixture probability density functions (pdfs) are shown to be useful models of radar sea clutter. The variability of certain parameters leads to estimation error and degradation in the performance of detection algorithms derived from this model. Robust implementations are introduced by assuming that parameters are known within certain intervals and selecting values to prevent an excessive number of false alarms. An empirical study demonstrates an average 6-9 dB gain in comparison with a constant false-alarm rate (CFAR) processor 相似文献
560.
A. J. Kliore J. D. Anderson J. W. Armstrong S. W. Asmar C. L. Hamilton N. J. Rappaport H. D. Wahlquist R. Ambrosini F. M. Flasar R. G. French L. Iess E. A. Marouf A. F. Nagy 《Space Science Reviews》2004,115(1-4):1-70
Cassini radio science investigations will be conducted both during the cruise (gravitational wave and conjunction experiments) and the Saturnian tour of the mission (atmospheric and ionospheric occultations, ring occultations, determinations of masses and gravity fields). New technologies in the construction of the instrument, which consists of a portion on-board the spacecraft and another portion on the ground, including the use of the Ka-band signal in addition to that of the S- and X-bands, open opportunities for important discoveries in each of the above scientific areas, due to increased accuracy, resolution, sensitivity, and dynamic range.This revised version was published online in July 2005 with a corrected cover date. 相似文献