首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17555篇
  免费   29篇
  国内免费   121篇
航空   9796篇
航天技术   5156篇
综合类   245篇
航天   2508篇
  2021年   152篇
  2018年   181篇
  2016年   150篇
  2014年   432篇
  2013年   513篇
  2012年   401篇
  2011年   555篇
  2010年   388篇
  2009年   745篇
  2008年   778篇
  2007年   345篇
  2006年   418篇
  2005年   366篇
  2004年   425篇
  2003年   501篇
  2002年   465篇
  2001年   522篇
  2000年   349篇
  1999年   436篇
  1998年   403篇
  1997年   310篇
  1996年   361篇
  1995年   423篇
  1994年   409篇
  1993年   351篇
  1992年   300篇
  1991年   250篇
  1990年   237篇
  1989年   390篇
  1988年   201篇
  1987年   233篇
  1986年   228篇
  1985年   635篇
  1984年   513篇
  1983年   395篇
  1982年   485篇
  1981年   605篇
  1980年   243篇
  1979年   183篇
  1978年   189篇
  1977年   145篇
  1976年   155篇
  1975年   186篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
301.
A simplified model for the orbital and relative motion of a tethered satellite system is presented. The tether acts as a light elastic string with small structural damping but without bending stiffness. Its mass is taken into account in the calculation of the total kinetic and potential energies of the tethered system. This formulation allows the inclusion of the complete gravity gradient influence on the dynamics of the system. The resulting three-dimensional motion is separated in the centre of mass orbital motion on the one hand and the relative motion of the end-bodies on the other. No restrictions on length of the tether or on mass ratio of the end-masses are imposed. It is found that the frequencies and amplitudes of the longitudinal tether oscillations are realistic as long as the tether mass is less than that of the subsatellite.  相似文献   
302.
R. Eric Dyke  Glenn A. Hrinda   《Acta Astronautica》2007,61(11-12):1029-1042
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.  相似文献   
303.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   
304.
Molly K. Macauley   《Space Policy》2005,21(2):121-128
The National Aeronautics and Space Administration (NASA) has proposed to use financial prizes to encourage innovation in space technology. Public debate about the use of prizes questions their effectiveness, the role of government compared with the private sector in administering prizes—for example, the Ansari X-Prize for human suborbital flight was privately funded and administered—and other issues that are likely to influence the success of this approach.  相似文献   
305.
In Celestial Mechanics the triple close approach is a highly unstable phenomenon that leads very often to the formation of a very small binary escaping with a large velocity in the direction opposite to the escape of the third body.That third escaping body is generally either the smallest mass or the second smallest and it implies a very selective effect in star clusters: the lightest stars are statistically the first to be ejected.  相似文献   
306.
Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization.

This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300–400 million dollars anually for the rest of the world.  相似文献   

307.
H. Fuchs  H. Legge 《Acta Astronautica》1979,6(9):1213-1226
At certain intervals excess water has to be dumped into space overboard of the Spacelab cabin. For the development of a useful nozzle the behaviour of a water jet flowing into vacuum was investigated experimentally and theoretical interpretations of the flow phenomena which were found are given. The influence of parameters like the shape of the nozzle, the temperature and the gas content of water were studied. At certain test conditions, the jet leaves the nozzle exit in bundled form and ends abruptly bursting into droplets and ice-particles. The “bursting”-mechanism is explained by a sudden boiling of the water in the jet causing the growth of vapor bubbles decomposing the jet. The formation of vapor bubbles is initiated by a superheating of the water of the jet caused by a sudden pressure drop and a cooling at the surface of the jet. The expansion of vapor bubbles in the jet is retarded by surface tension forces which results in a relaxation time for the bursting of the jet. The vapor flow in radial directions of the jet is approximately described by a plane radial source flow. The measurement of the pitot-pressure radially to the jet proves that the vapor flow is supersonic.  相似文献   
308.
R. Leblanc 《Acta Astronautica》1983,10(10):687-696
(Shock Wave-Laminar Boundary Layer Interaction on a Spinning Axisymmetric Body)—A method is developed to predict the shock wave-laminar boundary layer interaction on an axisymmetric body spinning in axial flow. The integral scheme of Lees, Reeves and Klineberg is used. The Falkner Skan “type” equations is then established for the boundary layer on spinning cylinder and used to construct the polynomial representation of the integral quantities. The independence of the polynomials with respect to the spinning rate is demonstrated. A cylinder of 200 mm diameter with a flare is built and tested up to 5000 rmp in wind tunnel at M = 2.21. The pressure measurements are in good agreement with the theoretical results. The rotation induces the decreasing of the pressure level and boundary layer separation inside the interaction region.  相似文献   
309.
Blood pressure at 30-sec intervals, heart rate, and percentage increase in leg volume continuously were recorded during a 25-min protocol in the M092 Inflight Lower Body Negative Pressure (LBNP) experiment carried out in the first manned Skylab mission. These data were collected during six tests on each crewman over a 5-month preflight period. The protocol consisted of a 5-min resting control period, 1 min at -8, 1 min at -16, 3 min at -30, 5 min at -40, and 5 min at -50 mm Hg LBNP. A 5-min recovery period followed. Inflight tests were performed at approximately 3-day intervals through the 28-day mission. Individual variations in cardiovascular responses to LBNP during the preflight period continued to be demonstrated in the inflight tests. Measurements of the calf indicated that a large volume of fluid was shifted out of the legs early in the flight and that a slower decrease in leg volume, presumably due to loss of muscle tissue, continued throughout the flight. Resting heart rates tended to be low early in the flight and to increase slightly as the flight progressed. Resting blood pressure varied but usually was characterized by slightly elevated systolic blood pressure, lower diastolic pressure, and higher pulse pressures than during preflight examinations. During LBNP inflight a much greater increase in leg volume occurred than in preflight tests. Large increases occurred even at the smallest levels of negative pressure, suggesting that the veins of the legs were relatively empty at the beginning of the LBNP. The greater volume of blood pooled in the legs was associated with greater increases of heart rate and diastolic pressure and larger falls of systolic and pulse pressure than seen in preflight tests. The LBNP protocol represented a greater stress inflight, and on three occasions it was necessary to stop the test early because of impending syncopal reactions. LBNP responses inflight appeared to predict the degree of postflight orthostatic intolerance. Postflight responses to LBNP during the first 48 hours were characterized by marked elevations of heart rate and instability of blood pressure. In addition, systolic and diastolic pressures were typically elevated considerably both at rest and also during stress. The time required for cardiovascular responses to return to preflight levels was much slower than in the case of Apollo crewmen.  相似文献   
310.
The USSR has submitted several proposals to the United Nations in recent years which are aimed at avoiding the militarization of outer space. This article examines three of the proposals and evaluates them in the context of existing treaties, to see whether or not they could resolve the political and legal problems which might arise. The reactions of the United Nations General Assembly and individual nations are also considered. The author concludes that several questions regarding the military aspects of space activity are left unresolved by the Soviet proposals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号