首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2281篇
  免费   4篇
  国内免费   3篇
航空   1231篇
航天技术   828篇
综合类   13篇
航天   216篇
  2018年   25篇
  2017年   22篇
  2014年   24篇
  2013年   47篇
  2012年   29篇
  2011年   59篇
  2010年   47篇
  2009年   57篇
  2008年   127篇
  2007年   38篇
  2006年   32篇
  2005年   46篇
  2004年   69篇
  2003年   72篇
  2002年   37篇
  2001年   55篇
  2000年   49篇
  1999年   27篇
  1998年   75篇
  1997年   53篇
  1996年   62篇
  1995年   70篇
  1994年   86篇
  1993年   51篇
  1992年   69篇
  1991年   29篇
  1990年   33篇
  1989年   70篇
  1988年   24篇
  1987年   29篇
  1986年   50篇
  1985年   87篇
  1984年   54篇
  1983年   61篇
  1982年   56篇
  1981年   68篇
  1980年   34篇
  1979年   27篇
  1978年   25篇
  1977年   24篇
  1975年   24篇
  1974年   24篇
  1973年   24篇
  1972年   21篇
  1971年   31篇
  1970年   17篇
  1969年   25篇
  1968年   18篇
  1967年   20篇
  1966年   19篇
排序方式: 共有2288条查询结果,搜索用时 15 毫秒
811.
812.
The Yangjiatan tungsten district at latitude 27°28′ N. and longitude 111°54′E. is located about 140 km southwest of the city of Changsha and 35 km northeast of the town of Shaoyang, southeast Hunan Province, People's Republic of China. The deposits, consisting largely of scheelite in veins (Wang, 1975), are contained in highly folded and faulted sedimentary rocks of Paleozoic, Mesozoic, and Cenozoic age intruded by granitic plutons that are circular in plan view. The major faults and folds trend in a northeasterly direction; whereas, the plutons are clustered in a more easterly trending band across the Landsat image.Landsat image E-2338-02202, acquired December 26, 1975, is number 470 in the “Landsat Image Atlas of the People's Republic of China” printed by the Publishing House of Geology in 1979. A computer-compatible tape of the image was analyzed and used as a demonstration project under a United Nations technical assistance program. Supervised classification of soils, rocks, and vegetation; band ratioing to detect limonite alteration; and edge enhancement were all conducted to demonstrate the flexibility and capability of interactive computer systems. Field evaluation of the results of this work will be conducted by colleagues of the Remote Sensing Center for Geology, Ministry of Geology, in China.  相似文献   
813.
The Shuttle Multispectral Infrared Radiometer (SMIRR) is a spectroradiometer covering the region from 0.5 to 2.5 μm in 10 channels that acquired data from spots 100 m in diameter along the subspacecraft ground track. It was flown aboard the second flight of the space shuttle Columbia, November 12–14, 1981. Data collected during orbit 16 over southern Egypt show that carbonate rocks, kaolinite, and possibly montmorillonite can be identified by their SMIRR spectral signatures and limited knowledge of the lithologic units present. Detailed analysis of SMIRR data for this area indicates that calcite, kaolinite, and montmorillonite rocks give rise to absorption features that result in characteristic 10 channel spectra.  相似文献   
814.
Airborne laser systems have demonstrated enormous potential for topographic and bathymetric mapping. Both profiling and scanning systems have been evaluated for terrain elevation mapping, stream valley cross-section determination, and nearshore bottom profiling. Performance of the laser systems has been impressive and for some applications matches current operational accuracy requirements. Determining the position of individual laser measurements remains a constraint for most applications. Laser technology constrains some terrain and bathymetric applications, particularly for water penetration and frequency of measurements for high-spatial resolution over large areas.  相似文献   
815.
816.
Space Science Reviews - The nature of the fine-scale structure in the gamma-ray distribution is not yet disclosed. Considerable debate is going on whether these structures which appear point-like...  相似文献   
817.
818.
A new chaff cloud model (CCM) is described which is based on fundamental principles with modifications based on laboratory observations. Excellent approximations to the exact physical model have been developed which can rapidly predict the chaff fiber density and orientation as a function of location, time and fiber characteristics. Using this information, the time varying radar cross section (RCS) density is determined for any frequency and polarization anywhere within the chaff cloud. The results are consistent with full scale observations, and the computational speed allows the model to be integrated into existing real time radar simulations.  相似文献   
819.
At Uranus, the Voyager 2 plasma wave investigation observed very significant phenomena related to radio emissions, dust impacts and magnetospheric wave-particle interactions. On January 19, 1986 (R= 270RU) the plasma wave investigation detected an intense radio burst at 31 and 56 kHz, and this provided the first indication that Uranus had a magnetosphere. During the encounter we observed more of these sporadic bursts, along with relatively continuous radio emissions extending down to 10 kHz, and a sporadic narrowband radio signal with f near 5 kHz. As Voyager passed through the ring plane, the plasma wave investigation recorded a large number of dust impacts. The dust ring was relatively diffuse (thickness of several thousand kilometers) and the peak impact rate was near 50 hits/second. The Voyager 2 plasma wave instrument also detected many strong electromagnetic and electrostatic plasma waves, with intensity peaks in the region within 12 Uranus adii. These waves have characteristics that can interact strongly with the local plasma and with the trapped energetic particles, leading to precipitation into the atmosphere, charged particle acceleration, and charged particle diffusion. In addition we detected strong wave activity in the region of the bow shock and moderate levels in the magnetic tail.  相似文献   
820.
We have selected four widely different flares from the early period of operations of the Hard X-Ray Imaging Spectrometer (HXIS) on SMM to illustrate the characteristic imaging properties of this experiment. For the small flare of April 4, 1980, we demonstrate the instrument's capability for locating a compact source. In the weak, but extensive, flare of April 6 we show how well the instrument can display spatial structure, and also the low level of the instrument background. In the 1B flare of April 7 we are able to locate positions of the X-ray emission in the soft and hard channels, and estimate the positional variations of the emission patches. Finally, in the IN flare of April 10, which produced the strongest hard X-ray burst we have seen so far, we repeat some of the studies made for the April 7 event, and also demonstrate the capability of the HXIS instrument to study the development, with high time resolution, of individual 8″ × 8″ elements of the flare.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号