首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4101篇
  免费   17篇
  国内免费   12篇
航空   2103篇
航天技术   1460篇
综合类   21篇
航天   546篇
  2021年   30篇
  2018年   60篇
  2017年   37篇
  2016年   34篇
  2014年   69篇
  2013年   94篇
  2012年   71篇
  2011年   129篇
  2010年   98篇
  2009年   135篇
  2008年   196篇
  2007年   80篇
  2006年   68篇
  2005年   89篇
  2004年   112篇
  2003年   128篇
  2002年   66篇
  2001年   105篇
  2000年   78篇
  1999年   69篇
  1998年   128篇
  1997年   83篇
  1996年   105篇
  1995年   138篇
  1994年   120篇
  1993年   96篇
  1992年   123篇
  1991年   56篇
  1990年   48篇
  1989年   108篇
  1988年   42篇
  1987年   47篇
  1986年   64篇
  1985年   155篇
  1984年   100篇
  1983年   107篇
  1982年   113篇
  1981年   126篇
  1980年   52篇
  1979年   50篇
  1978年   48篇
  1977年   41篇
  1976年   32篇
  1975年   42篇
  1974年   38篇
  1973年   33篇
  1972年   34篇
  1971年   36篇
  1970年   33篇
  1969年   41篇
排序方式: 共有4130条查询结果,搜索用时 15 毫秒
391.
392.
Numerical modeling tools can be used for a number of reasons yielding many benefits in their application to planetary upper atmosphere and ionosphere environments. These tools are commonly used to predict upper atmosphere and ionosphere characteristics and to interpret measurements once they are obtained. Additional applications of these tools include conducting diagnostic balance studies, converting raw measurements into useful physical parameters, and comparing features and processes of different planetary atmospheres. This chapter focuses upon various classes of upper atmosphere and ionosphere numerical modeling tools, the equations solved and key assumptions made, specified inputs and tunable parameters, their common applications, and finally their notable strengths and weaknesses. Examples of these model classes and their specific applications to individual planetary environments will be described.  相似文献   
393.
This paper presents results of a preliminary study of feasibility for the application of electroactive polymer (EAP) based actuators to a robotic locomotion system, intended by the European Space Agency (ESA) to operate on the surface of Mars. The system is conceived as an elastic spherical rover, exploiting wind propulsion for surface motion, while adopting an active mechanism for vertical jumping over obstacles. The use of polymeric electromechanical devices is envisaged in order to provide actuation to such a jumping mechanism. Among the available EAP technologies, new contractile linear actuators based on dielectric elastomers arc proposed in this study as suitable devices and two potential solutions concerning their use are designed, modeled, and evaluated via numerical simulations. The best solution reveals interesting simulated performances, enabling jumping of obstacle heights corresponding to more than 7% of the diameter of the rover  相似文献   
394.
This paper describes data-aided signal level and noise variance estimators for Gaussian minimum shift keying (GMSK) when the observations are limited to the output of a filter matched to the first pulse-amplitude modulation (PAM) pulse in the equivalent PAM representation. The estimators are based on the maximum likelihood (ML) principle and assume burst-mode transmission with known timing and a block of L0 known bits. While it is well known that ML estimators are asymptotically unbiased and efficient, the analysis quantifies the rate at which the estimators approach these asymptotic properties. It is shown that the carrier phase, amplitude, and noise variance estimators are unbiased and can achieve their corresponding Cramer-Rao bounds with modest combinations of signal-to-noise ratio and observation length. The estimates are used to estimate the signal-to-noise ratio. It is shown that the mean squared error performance of the ratio increases with signal-to-noise ratio while the mean squared error performance of the ratio in decibels decreases with signal-to-noise ratio. Simulation results are provided to confirm the accuracy of the analytic results.  相似文献   
395.
Our empirical model of electron density (ne) for quiet and weakly disturbed geomagnetic conditions (Kp not greater 4) takes account of comparative analysis of existing models and of experimental data obtained by rockets and incoherent scatter radar. The model describes the ne distribution in the 80 to 200 km height range at low and middle latitudes, and to some extent, in the subauroral region. It is presented in analytical form thus allowing one to calculate electron density profiles for any time. The electron density distribution at 140 km depends on the season (day of the year) and on the solar zenith angle. Profile variations during the day are for one season shown. Different from other models, ours specifies the variations during sunrise and sunset and reflects the particular profile shape at night admitting the occurrence of an intermediate layer.  相似文献   
396.
EXOSAT has observed 19 hot white dwarfs with alleged strong soft X-ray emission. Positive detection of a large fraction of this sample was obtained, among these practically all hot DA dwarfs. High-resolution spectral data, acquired with the 500 1/mm grating spectrometer, indicates no traces of He in the atmosphere of HZ43, i.e. n(He)/n(H) ? 10?5 at a photospheric temperature of 60000 K (log g = 8). In contrast, the hot DA1 dwarf Feige 24 shows the presence of an appreciable He-abundance (n(He)/n(H) ? 10?3); however no simple homogeneously mixed H/He atmosphere can explain the observed spectral shape.  相似文献   
397.
Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced (“Mars on Earth®”) in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An “Earth to Mars” project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process.  相似文献   
398.
An iteration method for airfoil shape completing using the pressure coefficient distribution specified on its sought part is proposed. The incompressible flow viscosity is taken into account by the boundary layer model, the iteration process is constructed with the use of G.Yu. Stepanov’s idea. The solution algorithm is compiled and a set of numerical calculations is carried out. It is shown that the method proposed offers advantages over the well-known numerical-analytical scheme of solving mixed inverse boundary-value problems of aerohydrodynamics in the case of viscous incompressible fluid.  相似文献   
399.
The investigation of the general properties of non-thermal (NT) X-ray shell supernova remnants (SNRs), of which SN 1006 is the prototype, is important to understand how electrons are accelerated in SNR shocks and what is the origin of cosmic rays. Using the XMM-Newton satellite, we are carrying on a survey of putative non-thermal SNR candidates previously unknown or little studied in the X-ray band, in order to investigate the different manifestations of NT emission in SNR shells. The SNRs we have selected are likely to expand in a low density medium, and therefore to have a low thermal X-ray emission, that usually outshines the non-thermal one. We report here preliminary results obtained on the SNR shell DA 530.  相似文献   
400.
In the present work we assess the stable and transient antiparticle content of planetary magnetospheres, and subsequently we consider their capture and application to high delta-v space propulsion. We estimate the total antiparticle mass contained within the Earth’s magnetosphere to assess the expediency of such usage. Using Earth’s magnetic field region as an example, we have considered the various source mechanisms that are applicable to a planetary magnetosphere, the confinement duration versus transport processes, and the antiparticle loss mechanisms. We have estimated the content of the trapped population of antiparticles magnetically confined following production in the exosphere due to nuclear interactions between high energy cosmic rays (CR) and constituents of the residual planetary upper atmosphere.The galactic antiprotons that directly penetrate into the Earth’s magnetosphere are themselves secondary by its nature, i.e. produced in nuclear reactions of the cosmic rays passing through the interstellar matter. These antiproton fluxes are modified, dependent on energy, when penetrating into the heliosphere and subsequently into planetary magnetospheres. During its lifetime in the Galaxy, CR pass through the small grammage of the interstellar matter where they produce secondary antiprotons. In contrast to this, antiprotons generated by the same CR in magnetosphere are locally produced at a path length of several tens g/cm2 of matter in the ambient planetary upper atmosphere. Due to the latter process, the resulting magnetically confined fluxes significantly exceed the fluxes of the galactic antiprotons in the Earth’s vicinity by up to two orders of magnitude at some energies.The radiation belt antiparticles can possibly be extracted with an electromagnetic-based “scoop” device. The antiparticles could be concentrated by and then stored within the superimposed magnetic field structure of such a device. In future developments, it is anticipated that the energy of the captured antiparticles (both rest energy and kinetic energy) can be adapted for use as a fuel for propelling spacecraft to high velocities for remote solar system missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号