首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4098篇
  免费   14篇
  国内免费   12篇
航空   2103篇
航天技术   1454篇
综合类   21篇
航天   546篇
  2021年   30篇
  2018年   60篇
  2017年   36篇
  2016年   34篇
  2014年   69篇
  2013年   93篇
  2012年   71篇
  2011年   129篇
  2010年   98篇
  2009年   135篇
  2008年   196篇
  2007年   80篇
  2006年   68篇
  2005年   89篇
  2004年   112篇
  2003年   128篇
  2002年   66篇
  2001年   105篇
  2000年   78篇
  1999年   69篇
  1998年   128篇
  1997年   83篇
  1996年   105篇
  1995年   138篇
  1994年   120篇
  1993年   96篇
  1992年   123篇
  1991年   56篇
  1990年   48篇
  1989年   108篇
  1988年   42篇
  1987年   47篇
  1986年   63篇
  1985年   153篇
  1984年   100篇
  1983年   107篇
  1982年   112篇
  1981年   126篇
  1980年   52篇
  1979年   50篇
  1978年   48篇
  1977年   41篇
  1976年   32篇
  1975年   42篇
  1974年   38篇
  1973年   33篇
  1972年   34篇
  1971年   36篇
  1970年   33篇
  1969年   41篇
排序方式: 共有4124条查询结果,搜索用时 281 毫秒
231.
为达到IHPTET计划第三阶段目标,普惠公司进行了XTC67/1核心机试验。该公司在实施XTC67/1计划中取得了一些成果,但也存在一些问题  相似文献   
232.
许多已经达到载客寿命的波音、空客和支线涡桨飞机都可以改装为货机,一个新兴的客改货市场正在形成。但客改贷项目的成功与否取决于飞机的改装费用和租金。  相似文献   
233.
Messenger  S.  Stadermann  F.J.  Floss  C.  Nittler  L.R.  Mukhopadhyay  S. 《Space Science Reviews》2003,106(1-4):155-172
Interplanetary dust particles collected in the stratosphere frequently exhibit enrichments in deuterium (D) and 15N relative to terrestrial materials. These effects are most likely due to the preservation of presolar interstellar materials. While the elevated D/H ratios probably resulted from mass fractionation during chemical reactions at very low < 100 K temperatures, the origin of the N isotopic anomalies remains unresolved. The bulk of the N-bearing material may have obtained its isotopic signatures from low temperature chemistry, but a nucleosynthetic origin is also possible. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
234.
Le Traon  P.Y.  Hernandez  F.  Rio  M.H.  Davidson  F. 《Space Science Reviews》2003,108(1-2):239-249
With a precise geoid, GOCE will allow an estimation of absolute dynamic topography from altimetry. The projected benefits to operational oceanography and its applications are analyzed herein. After a brief overview of operational oceanography, we explain how the new geoids will be used in the future to improve real time altimeter products and to better constrain modelling and data assimilation systems. A significant impact is expected both for mesoscale (e.g. better estimations and forecasts of currents for pollution monitoring, marine safety, offshore industry) and climate (better initialization of coupled ocean/atmosphere models) applications. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
235.
Kamide  Y.  Kihn  E.A.  Ridley  A.J.  Cliver  E.W.  Kadowaki  Y. 《Space Science Reviews》2003,107(1-2):307-316
We report the recent progress in our joint program of real-time mapping of ionospheric electric fields and currents and field-aligned currents through the Geospace Environment Data Analysis System (GEDAS) at the Solar-Terrestrial Environment Laboratory and similar computer systems in the world. Data from individual ground magnetometers as well as from the solar wind are collected by these systems and are used as input for the KRM and AMIE magnetogram-inversion algorithms, which calculate the two-dimensional distribution of the ionospheric parameters. One of the goals of this program is to specify the solar-terrestrial environment in terms of ionospheric processes, providing the scientific community with more than what geomagnetic activity indices and statistical models provide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
236.
Moore  T.E.  Collier  M.R.  Fok  M.-C.  Fuselier  S.A.  Khan  H.  Lennartsson  W.  Simpson  D.G.  Wilson  G.R.  Chandler  M.O. 《Space Science Reviews》2003,109(1-4):351-371
Development of the low energy neutral atom (LENA) imager was originally motivated by a need to remotely sense plasma heating in the topside ionosphere, with the goal of greatly enhanced temporal resolution of an otherwise familiar phenomenon. During ground test and calibration, the LENA imager was found to respond to neutral atoms with energies well above its nominal energy range of 10–750 eV, up to at least 3–4 keV, owing to sputtering interactions with its conversion surface. On orbit, LENA has been found to respond to a ubiquitous neutral atom component of the solar wind, to the neutral atoms formed by magnetosheath interactions with the geocorona during periods of high solar wind pressure, and to the interstellar neutral atoms flowing through the heliosphere during the season of maximal relative wind velocity between spacecraft and interstellar medium. LENA imaging has thus emerged as a promising new tool for studying the interplanetary medium and its interaction with the magnetosphere, in addition to the ionospheric heating and outflow that result from this interaction. LENA emissions from the ionosphere consist of a fast component that can be observed at high altitudes, and slower components that evidently create a quasi-trapped extended superthermal exosphere. The more energetic emissions are responsive to solar wind energy inputs on time scales of a few minutes.  相似文献   
237.
Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging   总被引:3,自引:0,他引:3  
Mende  S.B.  Heetderks  H.  Frey  H.U.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Tremsin  A.S.  Spann  J.  Dougani  H.  Fuselier  S.A.  Magoncelli  A.L.  Bumala  M.B.  Murphree  S.  Trondsen  T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response.  相似文献   
238.
Mende  S.B.  Heetderks  H.  Frey  H.U.  Stock  J.M.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Habraken  S.  Renotte  E.  Jamar  C.  Rochus  P.  Gerard  J.-C.  Sigler  R.  Lauche  H. 《Space Science Reviews》2000,91(1-2):287-318
Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Doppler-shifted Lyman- while rejecting the geocoronal `cold Ly-, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly- is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8×10–2 and 1.3×10–2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128×128 pixel matrix over the 15°×15° field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems that use charge division and it has a further advantage that it saturates more gradually at high count rates. The geocoronal Ly- is measured by a three-channel photometer system (GEO) which is a separate instrument. Each photometer has a built in MgF2 lens to restrict the field of view to one degree and a ceramic electron multiplier with a KBr photocathode. One of the tubes is pointing radially outward perpendicular to the axis of satellite rotation. The optic of the other two subtend 60° with the rotation axis. These instruments take data continuously at 3 samples per second and rely on the combination of satellite rotation and orbital motion to scan the hydrogen cloud surrounding the earth. The detective efficiencies (effective quantum efficiency including windows) of the three tubes at Ly- are between 6 and 10%.  相似文献   
239.
The Extreme Ultraviolet Imager Investigation for the IMAGE Mission   总被引:13,自引:0,他引:13  
Sandel  B.R.  Broadfoot  A.L.  Curtis  C.C.  King  R.A.  Stone  T.C.  Hill  R.H.  Chen  J.  Siegmund  O.H.W.  Raffanti  R.  Allred  DAVID D.  Turley  R. STEVEN  Gallagher  D.L. 《Space Science Reviews》2000,91(1-2):197-242
The Extreme Ultraviolet Imager (EUV) of the IMAGE Mission will study the distribution of He+ in Earth's plasmasphere by detecting its resonantly-scattered emission at 30.4 nm. It will record the structure and dynamics of the cold plasma in Earth's plasmasphere on a global scale. The 30.4-nm feature is relatively easy to measure because it is the brightest ion emission from the plasmasphere, it is spectrally isolated, and the background at that wavelength is negligible. Measurements are easy to interpret because the plasmaspheric He+ emission is optically thin, so its brightness is directly proportional to the He+ column abundance. Effective imaging of the plasmaspheric He+ requires global `snapshots in which the high apogee and the wide field of view of EUV provide in a single exposure a map of the entire plasmasphere. EUV consists of three identical sensor heads, each having a field of view 30° in diameter. These sensors are tilted relative to one another to cover a fan-shaped field of 84°×30°, which is swept across the plasmasphere by the spin of the satellite. EUVs spatial resolution is 0.6° or 0.1 R E in the equatorial plane seen from apogee. The sensitivity is 1.9 count s–1 Rayleigh–1, sufficient to map the position of the plasmapause with a time resolution of 10 min.  相似文献   
240.
Arnold  N.F.  Robinson  T.R. 《Space Science Reviews》2000,94(1-2):279-286
Recent observational evidence has suggested that variations in solar activity may affect winter stratospheric polar ozone and temperature levels. The paucity of direct sunlight available during this season points strongly to a dynamical mechanism. We have carried out several large ensemble experiments within the middle atmosphere and the coupled middle atmosphere and lower thermosphere to simulate the radiative/dynamical coupling via planetary waves for a range of solar fluxes. In the former case, the model response in the winter stratosphere was linear and of the order of the summer stratopause forcing, whilst in the latter, the level of correlation in the winter stratosphere remained high, but was diluted over a wider volume. The inclusion of the upper atmosphere enhanced the winter polar stratospheric response by a factor of three.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号