首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5157篇
  免费   27篇
  国内免费   9篇
航空   2663篇
航天技术   1801篇
综合类   23篇
航天   706篇
  2021年   36篇
  2019年   32篇
  2018年   80篇
  2017年   59篇
  2016年   51篇
  2014年   86篇
  2013年   110篇
  2012年   102篇
  2011年   157篇
  2010年   116篇
  2009年   180篇
  2008年   266篇
  2007年   114篇
  2006年   102篇
  2005年   129篇
  2004年   132篇
  2003年   167篇
  2002年   96篇
  2001年   162篇
  2000年   111篇
  1999年   101篇
  1998年   149篇
  1997年   109篇
  1996年   138篇
  1995年   177篇
  1994年   168篇
  1993年   100篇
  1992年   136篇
  1991年   61篇
  1990年   65篇
  1989年   143篇
  1988年   59篇
  1987年   59篇
  1986年   81篇
  1985年   165篇
  1984年   132篇
  1983年   122篇
  1982年   121篇
  1981年   144篇
  1980年   56篇
  1979年   46篇
  1978年   52篇
  1977年   44篇
  1975年   53篇
  1974年   45篇
  1973年   39篇
  1972年   51篇
  1971年   45篇
  1969年   35篇
  1967年   30篇
排序方式: 共有5193条查询结果,搜索用时 15 毫秒
941.
(Instrument Developments for Applications in Remote Sensing, Photogrammetry, Geophysics and Geodesy) The Modular Optoelectronic Multispectral Seanner MOMS-01, a CCD camera using the push-broom scanner principle, is presented in this paper in its flight configuration. This instrument will be the first European-built spaceborne unaging system for remote sensing applications (launch with Shuttle flight No. 7).Follow-on developments of this initial two-channel version are oriented to an extension of capabilities by a panchromatic high-resolution stereoscopic module for thematic mapping and two additional spectral channels in the reflective IR (up to 2.3 μm) offering a high interpretation potential for future earth resources exploration missions. Furthermore the subjects of advanced laser technology studies are introduced: A picosecond pulse laser system for detection of tectonic motions and for geodetic application, a CO laser for ultra precise range rate determination (Earth potential and Geoid) and a laser range finder for intersatellite distance measurements.  相似文献   
942.
The Solwind coronagraph on the P78-1 earth-orbiting satellite has been monitoring the Sun routinely at 10-minute intervals during the 5-year interval from April, 1979 to the present. In a statistical analysis of about 1000 mass ejections observed through the end of 1981, we find an average occurrence rate of 1.8 mass ejections per day. Histograms of speed, central latitude, angular span, brightness, and other parameters have been constructed, and properties such as shape classification have been tabulated. These characteristics are summarized for these years near sunspot maximum. The average speed and mass estimate are found to be similar to those found at the declining phase of the previous sunspot cycle. The angular span and central latitude distributions are quite different than seen during the declining phase, and are very dependent upon structural class. The fluctuations in the occurrence rate of CMEs does not seem to match the fluctuations in the sunspot number. There is a tendency for high speed CMEs to occur more frequently in 1981 than in 1980, and more frequently in 1980 than in 1979.  相似文献   
943.
The development of a prototype instrument for biological tests aboard the International Space Station is reviewed. The instrument will employ specially formatted glass and plastic compact disks to conduct tests on biological samples. Special dyes will indicate the presence of proteins, DNA, and other chemicals. One benefit will be the ability to increase the number of trials in an experiment, lending greater validity to the results.  相似文献   
944.
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.  相似文献   
945.
We present a detailed analysis of a widely used assay in human spatial cognition, the judgments of relative direction (JRD) task. We conducted three experiments involving virtual navigation interspersed with the JRD task, and included confidence judgments and map drawing as additional metrics. We also present a technique for assessing the similarity of the cognitive representations underlying performance on the JRD and map-drawing tasks. Our results support the construct validity of the JRD task and its connection to allocentric representation. Additionally, we found that chance performance on the JRD task depends on the distribution of the angles of participants’ responses, rather than being constant and 90 degrees. Accordingly, we present a method for better determining chance performance.  相似文献   
946.
In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997–2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.  相似文献   
947.
A “Real-Time” plasma hazard assessment process was developed to support International Space Station (ISS) Program real-time decision-making providing solar array constraint relief information for Extravehicular Activities (EVAs) planning and operations. This process incorporates real-time ionospheric conditions, ISS solar arrays’ orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real-time data that is presently provided by the Floating Potential Measurement Unit (FPMU) which measures the ISS floating potential (FP), along with ionospheric electron number density (Ne) and electron temperature (Te), in order to determine the present ISS environment. Once the present environment conditions are correlated with International Reference Ionosphere (IRI) values, IRI is used to forecast what the environment could become in the event of a severe geomagnetic storm. If the FPMU should fail, the Space Environments team needs another source of data which is utilized to support a short-term forecast for EVAs. The IRI Real-Time Assimilative Mapping (IRTAM) model is an ionospheric model that uses real-time measurements from a large network of digisondes to produce foF2 and hmF2 global maps in 15?min cadence. The Boeing Space Environments team has used the IRI coefficients produced in IRTAM to calculate the Ne along the ISS orbital track. The results of the IRTAM model have been compared to FPMU measurements and show excellent agreement. IRTAM has been identified as the FPMU back-up system that will be used to support the ISS Program if the FPMU should fail.  相似文献   
948.
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA’s OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid’s surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun’s variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid’s most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid’s surface using the asteroid’s rotation as well as the spacecraft’s orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master’s and Ph.D. theses and other student publications.  相似文献   
949.
The OSIRIS-REx mission will conduct a Radio Science investigation of the asteroid Bennu with a primary goal of estimating the mass and gravity field of the asteroid. The spacecraft will conduct proximity operations around Bennu for over 1 year, during which time radiometric tracking data, optical landmark tracking images, and altimetry data will be obtained that can be used to make these estimates. Most significantly, the main Radio Science experiment will be a 9-day arc of quiescent operations in a 1-km nominally circular terminator orbit. The pristine data from this arc will allow the Radio Science team to determine the significant components of the gravity field up to the fourth spherical harmonic degree. The Radio Science team will also be responsible for estimating the surface accelerations, surface slopes, constraints on the internal density distribution of Bennu, the rotational state of Bennu to confirm YORP estimates, and the ephemeris of Bennu that incorporates a detailed model of the Yarkovsky effect.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号