首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航空   3篇
航天技术   4篇
航天   7篇
  2022年   1篇
  2018年   1篇
  2016年   2篇
  2014年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  1996年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
11.
Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.  相似文献   
12.
The main goals of the Chibis-M mission are the testing of a new micro-satellite technology, the study of new physical processes related to lightning activity and the verification of possible monitoring techniques of Space Weather phenomena. In frames of the Chibis-M mission an electromagnetic wave complex MWC is installed on board of the satellite composed of electromagnetic sensors and SAS3 measuring unit. The obtained data show that the scientific instrumentation operates properly and produces interesting information. Here we present the first results of the first year of operation of the MWC in the ELF–VLF bands in different operation modes. An important conclusion is that basing on the experience of the first year it is possible to realize an effective and reliable Space Weather monitoring system using micro-satellites and simultaneously operating ground support equipments.  相似文献   
13.
An approximate nonlinear spectral-correlation model of fluctuations of the amplitude—frequency characteristics of the Chandler self-excited oscillations of the Earth’s pole is considered. The sensitivity of the model parameters to the asymmetry and anisotropy of fluctuation-dissipative moments of forces and to the effect of harmonic gravitation-tidal moments of forces is studied at Chandler frequency and frequencies close to it. The results of analytical and statistical modeling of the stability of the amplitude—frequency characteristics are presented. The influence of fluctuation disturbances of the white noise type on spectral-correlation characteristics of the oscillations is investigated.  相似文献   
14.
Wave and oscillatory activity is observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands in all parts of the solar corona. Magnetohydrodynamic (MHD) wave theory gives satisfactory interpretation of these phenomena in terms of MHD modes of coronal structures. The paper reviews the current trends in the observational study of coronal oscillations, recent development of theoretical modelling of MHD wave interaction with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasmas is discussed. In particular, the applicability of this method to the estimation of the coronal magnetic field is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号