首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3199篇
  免费   7篇
  国内免费   5篇
航空   1192篇
航天技术   1038篇
综合类   19篇
航天   962篇
  2022年   15篇
  2021年   37篇
  2019年   16篇
  2018年   127篇
  2017年   102篇
  2016年   115篇
  2015年   41篇
  2014年   111篇
  2013年   134篇
  2012年   118篇
  2011年   158篇
  2010年   127篇
  2009年   192篇
  2008年   190篇
  2007年   122篇
  2006年   74篇
  2005年   101篇
  2004年   94篇
  2003年   106篇
  2002年   83篇
  2001年   113篇
  2000年   36篇
  1999年   53篇
  1998年   61篇
  1997年   42篇
  1996年   43篇
  1995年   80篇
  1994年   61篇
  1993年   34篇
  1992年   45篇
  1991年   10篇
  1990年   19篇
  1989年   41篇
  1988年   11篇
  1987年   17篇
  1986年   16篇
  1985年   70篇
  1984年   56篇
  1983年   48篇
  1982年   42篇
  1981年   82篇
  1980年   25篇
  1979年   16篇
  1978年   14篇
  1977年   17篇
  1976年   13篇
  1975年   13篇
  1974年   11篇
  1972年   13篇
  1971年   11篇
排序方式: 共有3211条查询结果,搜索用时 15 毫秒
221.
SAR ATR performance using a conditionally Gaussian model   总被引:1,自引:0,他引:1  
A family of conditionally Gaussian signal models for synthetic aperture radar (SAR) imagery is presented, extending a related class of models developed for high resolution radar range profiles. This signal model is robust with respect to the variations of the complex-valued radar signals due to the coherent combination of returns from scatterers as those scatterers move through relative distances on the order of a wavelength of the transmitted signal (target speckle). The target type and the relative orientations of the sensor, target, and ground plane parameterize the conditionally Gaussian model. Based upon this model, algorithms to jointly estimate both the target type and pose are developed. Performance results for both target pose estimation and target recognition are presented for publicly released data from the MSTAR program  相似文献   
222.
The modified generalized sign test processor is a nonparametric, adaptive detector for 2-D search radars. The detector ranks a sample under test with its neighboring samples and integrates (on a pulse-to-pulse basis) the ranks with a two-pole filter. A target is declared when the integrated output exceeds two thresholds. The first threshold is fixed and yields a 10-6 probability of false alarm when the neighboring samples are independent and identically distributed. The second threshold is adaptive and maintains a low false-alarm rate when the integrated neighboring samples are correlated and when there are nonhomogeneities, such as extraneous targets, in the neighboring cells. Using Monte Carlo techniques, probability of false-alarm results, probability of detection curves, and angular accuracy curves have been generated for this detector. The detector was built and PPI photographs are used to indicate the detector's performance when the radar is operated over land clutter.  相似文献   
223.
In this paper, we present an algorithm for geometrically nonlinear finite element analysis of the shells of revolution. Use is made of the most proper algorithms for vector interpolation of displacements through the nodal unknowns and an efficient algorithm for obtaining the stress-strain increment relation at a step of loading. By comparing the results of analyzing a geometrically nonlinear shell of revolution obtained on the basis of the ANSYS software with the scalar interpolation of displacements with those obtained on the basis of an author-developed finite element, it has been shown that application of the FEM vector displacement interpolation leads to increasing the accuracy of the finite element solutions in analyzing the stress-strain state of the geometrically nonlinear shells.  相似文献   
224.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
225.
Frey  H.U.  Mende  S.B.  Immel  T.J.  Gérard  J.-C.  Hubert  B.  Habraken  S.  Spann  J.  Gladstone  G.R.  Bisikalo  D.V.  Shematovich  V.I. 《Space Science Reviews》2003,109(1-4):255-283
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.  相似文献   
226.
We present results derived from the analysis of an equatorial streamer structure as observed by the UVCS instrument aboard SOHO. From observations of the H I Lyα and Lyβ lines we infer the density and temperature of the plasma. We develop a preliminary axisymmetric, magnetostatic model of the corona which includes the effects of gas pressure gradients on the magnetic structure. We infer a coronal plasma β > 1 in the closed field regions and near the cusp of the streamer. We add to the model a parallel velocity field assuming mass flux conservation along magnetic flux tubes. We then compute the Lyα emissivity and the line-of-sight integrals to obtain images of Lyα intensity, taking into account projection effects and Doppler dimming. The images we obtain from this preliminary model are in good general agreement with the UVCS observations, both qualitatively and quantitatively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
227.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
228.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
229.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号