首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   1篇
  国内免费   2篇
航空   155篇
航天技术   116篇
综合类   4篇
航天   27篇
  2018年   8篇
  2017年   2篇
  2016年   3篇
  2014年   9篇
  2013年   12篇
  2012年   3篇
  2011年   12篇
  2010年   4篇
  2009年   13篇
  2008年   18篇
  2007年   9篇
  2006年   17篇
  2005年   7篇
  2004年   5篇
  2003年   15篇
  2002年   3篇
  2001年   10篇
  2000年   8篇
  1999年   10篇
  1998年   6篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   9篇
  1993年   5篇
  1992年   7篇
  1990年   3篇
  1989年   6篇
  1988年   5篇
  1986年   2篇
  1985年   6篇
  1984年   9篇
  1982年   8篇
  1981年   14篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1976年   6篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   5篇
  1971年   2篇
  1970年   3篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
261.
This paper investigates the optimization of the full-polarization radar transmission waveform and the receiver response to maximize either target detection or identification performance. Application of such full-polarization matched-illumination techniques to simulated VHF-band frequency response data of mobile surface targets yields a significant performance improvement over that corresponding to chirped full-polarization transmission waveforms.  相似文献   
262.
On TC-1 (Tan Ce 1), the equatorial spacecraft of the Double Star mission, a strong spin-synchronized magnetic interference from the solar panels was observed. In-flight correction techniques for spinning spacecraft that are based on minimizing spin tones in the spin-aligned component and in the magnitude of the ambient magnetic field are therefore not possible in this case. However, due to the fortunate situation that the spacecraft carries two flux-gate magnetometers on the same boom (at 0.5 m distance from each other), the spacecraft field effects could be removed from the spin-averaged data to achieve 0.2 nT relative accuracy, by using a gradiometer technique. Methodology and results are presented. The obtained accuracy allows the use of the data in multi-spacecraft studies together with the Cluster satellites.  相似文献   
263.
The Cometary Sampling and Composition Experiment on board of European Space Agency's cornerstone mission ROSETTA is designed to identify organic molecules in cometary matter in situ by a combined pyrolysis gas chromatographic and mass spectrometric technique. Its capillary columns coated with chiral stationary phases received considerable attention, because they are designed for separations of non-complex enantiomers to allow the determination of enantiomeric ratios of cometary chiral organic compounds and consequently to provide information about the origin of molecular parity violation in biomolecules. To get gas chromatographic access to organic compounds on the comet, where macromolecules and complex organic polymers of low volatility are expected to make up the main organic ingredients, the combination of two injection techniques will be applied. The pyrolysis technique performed by heating cometary samples stepwise to defined temperatures in specific ovens resulting in thermochemolysis reactions of polymers and a chemical derivatization technique, in which the reagent dimethylformamide dimethylacetal assists pyrolysis derivatization reactions in producing methyl esters of polar monomers. The combination of the reagent assisted pyrolysis gas chromatographic technique with enantiomer separating chromatography was tested with laboratory-produced simulated cometary matter.  相似文献   
264.
Ground level enhancements of cosmic ray intensity registered by means of neutron monitors at middle latitudes were studied by using Student’s criterion. Three of these events on 6 November 1997, 24 August 1998, and 13 December 2006 were analyzed in detail. It is shown that the use of Student’s criterion allows revealing effectively the ground level enhancements at middle latitudes.  相似文献   
265.
Feldman  U.  Dammasch  I.E.  Wilhelm  K. 《Space Science Reviews》2000,93(3-4):411-472
The solar upper atmosphere (SUA) is defined as the volume above the photosphere occupied by plasmas with electron temperatures, T e, above 2×104 K. Until the Skylab era, only little was known about the morphology of the SUA, while the quality of the spectroscopic observations was continually improving. A spherically symmetric atmosphere was assumed at that time, in which the temperature increased with height. With advances in the observational techniques, it became apparent that the morphology of the SUA was very complex even during the minimum of the magnetic activity cycle. In particular, spectroscopic measurements with high spectral and spatial resolution, which were made in the light of ultraviolet emission lines representing a variety of temperatures, led to the conclusion that most of the radiation from the solar transition region could not be explained by assuming a continuous chromosphere-corona interface, but rather by a region of unresolved fine structures. Recent observational results obtained by modern instruments, such as the Extreme-ultraviolet Imaging Telescope (EIT), the Large Angle Spectroscopic Coronagraph (LASCO), and the Solar Ultraviolet Measurements of (SUMER) spectrograph on the Solar and Heliospheric Observatory (SOHO), as well as the Transition Region and Coronal Explorer (TRACE), and their interpretations will be presented in this review of our understanding of the morphology of the SUA.  相似文献   
266.
267.
ACE Spacecraft     
Chiu  M.C.  Von-Mehlem  U.I.  Willey  C.E.  Betenbaugh  T.M.  Maynard  J.J.  Krein  J.A.  Conde  R.F.  Gray  W.T.  Hunt  J.W.  Mosher  L.E.  McCullough  M.G.  Panneton  P.E.  Staiger  J.P.  Rodberg  E.H. 《Space Science Reviews》1998,86(1-4):257-284
The Johns Hopkins University Applied Physics Laboratory (JHU/APL) was responsible for the design and fabrication of the ACE spacecraft to accommodate the ACE Mission requirements and for the integration, test, and launch support for the entire ACE Observatory. The primary ACE Mission includes a significant number of science instruments - nine - whose diverse requirements had to be factored into the overall spacecraft bus design. Secondary missions for monitoring space weather and measuring launch vibration environments were also accommodated within the spacecraft design. Substantial coordination and cooperation were required between the spacecraft and instrument engineers, and all requirements were met. Overall, the spacecraft was kept as simple as possible in meeting requirements to achieve a highly reliable and low-cost design. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
268.
Although not the prime focus of the InSight mission, the near-surface geology and physical properties investigations provide critical information for both placing the instruments (seismometer and heat flow probe with mole) on the surface and for understanding the nature of the shallow subsurface and its effect on recorded seismic waves. Two color cameras on the lander will obtain multiple stereo images of the surface and its interaction with the spacecraft. Images will be used to identify the geologic materials and features present, quantify their areal coverage, help determine the basic geologic evolution of the area, and provide ground truth for orbital remote sensing data. A radiometer will measure the hourly temperature of the surface in two spots, which will determine the thermal inertia of the surface materials present and their particle size and/or cohesion. Continuous measurements of wind speed and direction offer a unique opportunity to correlate dust devils and high winds with eolian changes imaged at the surface and to determine the threshold friction wind stress for grain motion on Mars. During the first two weeks after landing, these investigations will support the selection of instrument placement locations that are relatively smooth, flat, free of small rocks and load bearing. Soil mechanics parameters and elastic properties of near surface materials will be determined from mole penetration and thermal conductivity measurements from the surface to 3–5 m depth, the measurement of seismic waves during mole hammering, passive monitoring of seismic waves, and experiments with the arm and scoop of the lander (indentations, scraping and trenching). These investigations will determine and test the presence and mechanical properties of the expected 3–17 m thick fragmented regolith (and underlying fractured material) built up by impact and eolian processes on top of Hesperian lava flows and determine its seismic properties for the seismic investigation of Mars’ interior.  相似文献   
269.
Although in recent years much has been learned about the atmospheric composition and structure of Venus, there are many key questions which remain unanswered. The Pioneer Venus set of experiments is designed to provide information both individually and collectively to help understand and explain first of all the present state of the atmosphere (the composition and distribution in both the lower and upper parts, the state property profiles, the cloud compositions, the role of phase in the thermal structure, the planet's surface and interior composition, the high surface temperature, the stability of CO2, the ionosphere — its chemistry and thermal structure, the existence of superrotation, the response of the upper atmosphere to changes in solar EUV and the solar wind) and secondly the origin and evolution of the atmosphere. This paper discusses these questions and the degree to which the Pioneer Venus instruments will respond to them.  相似文献   
270.
Quasi-static electric fields have been measured with two spherical probes supported by cable booms providing a baseline of 42 m for the measurement. The performance of the experiment is outlined to demonstrate that electric fields can be measured with accuracies of ±0.7 mV m-1 and ±1.0 mV m-1 in the dawn-dusk and satellite-sun directions respectively. These uncertainties can be considerably reduced under favourable plasma conditions. Examples of typical observations are described.
  1. The average electric field is always characterized by an irregular structure with time scales 0.5–5 min and with amplitudes of a few mV m-1.
  2. During substorms dawn-dusk electric fields up to 20–30 mV m-1 have been observed over intervals of 30–60 s.
  3. Oscillating electric fields with peak-to-peak amplitudes up to 10 mV m-1 and periods of 3–10 min have been observed following magnetospheric disturbances.
The observations are discussed in terms of plasma motions and possible spatial scale sizes of the phenomena, standing magnetospheric wave modes and electrostatic potentials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号