首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
航空   23篇
航天技术   13篇
航天   10篇
  2021年   4篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1981年   1篇
  1972年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
41.
42.
We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in the region of GRB 050925. This short Swift burst is a candidate for a newly discovered soft gamma-ray repeater (SGR) with the following observational burst properties: (1) galactic plane (b = −0.1°) localization, (2) 150 ms duration, and (3) a blackbody rather than a simple power-law spectral shape (with a significance level of 97%). We found two possible X-ray counterparts of GRB 050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray sources show the transient behavior with a power-law decay index shallower than −1. We found no hard X-ray emission nor any additional burst from the location of GRB 050925 in ∼5 ms of INTEGRAL data. We discuss about the three BATSE short bursts which might be associated with GRB 050925, based on their location and the duration. Assuming GRB 050925 is associated with the HII regions (W 58) at the galactic longitude of l = 70°, we also discuss the source frame properties of GRB 050925.  相似文献   
43.
Since it is not possible to predict when a Gamma-Ray Burst (GRB) will occur or when Active Galactic Nucleus (AGN) flaring activity starts, follow-up/monitoring ground telescopes must be located as uniformly as possible all over the world in order to collect data simultaneously with Fermi and Swift detections. However, there is a distinct gap in follow-up coverage of telescopes in the eastern U.S. region based on the operations of Swift. Motivated by this fact, we have constructed a 14″ fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are (1) to follow-up Swift/Fermi GRBs and (2) to perform the coordinated optical observations of Fermi Large Area Telescope (LAT) AGN. Our telescope system consists of off-the-shelf hardware. With the focal reducer, we are able to match the field of view of Swift narrow instruments (20′ × 20′). We started scientific observations in mid-November 2008 and GRT has been fully remotely operated since August 2009. The 3σ upper limit in a 30 s exposure in the R filter is ∼15.4 mag; however, we can reach to ∼18 mag in a 600 s exposures. Due to the weather condition at the telescope site, our observing efficiency is 30–40% on average.  相似文献   
44.
InSight’s Seismic Experiment for Interior Structure (SEIS) provides a unique and unprecedented opportunity to conduct the first geotechnical survey of the Martian soil by taking advantage of the repeated seismic signals that will be generated by the mole of the Heat Flow and Physical Properties Package (HP3). Knowledge of the elastic properties of the Martian regolith have implications to material strength and can constrain models of water content, and provide context to geological processes and history that have acted on the landing site in western Elysium Planitia. Moreover, it will help to reduce travel-time errors introduced into the analysis of seismic data due to poor knowledge of the shallow subsurface. The challenge faced by the InSight team is to overcome the limited temporal resolution of the sharp hammer signals, which have significantly higher frequency content than the SEIS 100 Hz sampling rate. Fortunately, since the mole propagates at a rate of \(\sim1~\mbox{mm}\) per stroke down to 5 m depth, we anticipate thousands of seismic signals, which will vary very gradually as the mole travels.Using a combination of field measurements and modeling we simulate a seismic data set that mimics the InSight HP3-SEIS scenario, and the resolution of the InSight seismometer data. We demonstrate that the direct signal, and more importantly an anticipated reflected signal from the interface between the bottom of the regolith layer and an underlying lava flow, are likely to be observed both by Insight’s Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We have outlined several strategies to increase the signal temporal resolution using the multitude of hammer stroke and internal timing information to stack and interpolate multiple signals, and demonstrated that in spite of the low resolution, the key parameters—seismic velocities and regolith depth—can be retrieved with a high degree of confidence.  相似文献   
45.
There exists a population of defunct satellites in the geo-stationary arc that potentially pose a hazard to current and future operational satellites. These drifting, non-station-kept objects have a variety of ages and sizes, and many are trapped in libration orbits around the Earth?s two gravitational potential wells (the non-spherical nature of the Earth gives rise to two geo-potential wells or “stable points” that affect objects in geostationary and geosynchronous orbits), whereas others were boosted to higher altitudes into so-called “graveyard” orbits.  相似文献   
46.
CHAMP and GRACE accelerometer calibration by GPS-based orbit determination   总被引:1,自引:0,他引:1  
Current and planned Earth observation missions are equipped with highly sensitive accelerometers. Before using the data, the instrument has to be calibrated by determining scale and bias parameters for each axis. Here, the accelerometer measurements are used in a GPS-based reduced-dynamic orbit determination approach, replacing the non-gravitational force models, and nominally daily calibration parameters are estimated. Additional empirical accelerations are estimated to account for deficiencies in the applied force models. This method is applied to 5 years of CHAMP and GRACE data, resulting in an orbit precision at the level of a few centimeters. In along-track direction the calibration parameters can be estimated freely, scale factors of 0.96 ± 0.014 and 0.95 ± 0.015 are obtained for GRACE A and B, and 0.85 ± 0.024 for CHAMP. A constant scale factor results in the smoothest bias series, with clear trends and occasional jumps. In radial and cross-track direction tight constraints to a priori biases have to be applied. Furthermore, the determined orbits are analyzed with respect to reference trajectories, and SLR, phase and KBR residuals are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号