首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   0篇
  国内免费   3篇
航空   172篇
航天技术   80篇
航天   88篇
  2021年   4篇
  2019年   4篇
  2018年   13篇
  2017年   8篇
  2016年   2篇
  2015年   6篇
  2014年   10篇
  2013年   20篇
  2012年   11篇
  2011年   26篇
  2010年   13篇
  2009年   14篇
  2008年   22篇
  2007年   16篇
  2006年   11篇
  2005年   16篇
  2004年   13篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   4篇
  1975年   4篇
  1970年   2篇
  1969年   2篇
  1968年   3篇
  1967年   6篇
  1966年   2篇
排序方式: 共有340条查询结果,搜索用时 31 毫秒
251.
Social support and depressed mood in isolated and confined environments   总被引:2,自引:0,他引:2  
The influence of isolation and confinement on social support and depressed mood was examined in a study of 235 men and women who spent a year at McMurdo Station in Antarctica, and a study of 77 men and women who spent a year at the Amundson-Scott South Pole Station. Although availability of support remained unchanged, there was a significant decrease in reported satisfaction with support obtained, as well as a significant increase in depressed mood. Satisfaction with support was inversely associated with depressed mood at the beginning and end of isolation and confinement. At the end of winter, this association varied by source of support. High levels of tension-anxiety, depression and anger preceded an increase in advice seeking, but high levels of advice seeking also preceded an increase in tension-anxiety and depression. Results suggest a significant erosion of social support under conditions of prolonged isolation and confinement, leading to an increase in depressed mood.  相似文献   
252.
New, innovative joint safety policies and requirements were developed in support of the Shuttle/Mir program, which is the first phase of the International Space Station program. This work has resulted in a joint multinational analysis culminating in joint certification for mission readiness. For these planning and development efforts, each nation's risk programs and individual safety practices had to be integrated into a comprehensive and compatible system that reflects the joint nature of the endeavor. This paper highlights the major incremental steps involved in planning and program integration during development of the Shuttle/Mir program. It traces the transition from early development to operational status and highlights the valuable lessons learned that apply to the International Space Station program (Phase 2). Also examined are external and extraneous factors that affected mission operations and the corresponding solutions to ensure safe and effective Shuttle/Mir missions.  相似文献   
253.
Ground-based transmitters called pseudolites have been proposed to augment the basic Global Positioning System (GPS) in environments where satellite visibility is limited. One difficulty in their use is the so-called near-far problem, where in close proximity to the ground transmitter, the pseudolite signal can be orders of magnitude stronger than the satellite signals. This large range of signal levels prevents a conventional receiver from simultaneously detecting both types of signals. This paper describes the application of a signal processing technique, known as successive interference cancellation (SIC), to the acquisition and tracking of weak satellite signals in the presence of a nearby pseudolite and possible multipath reflections of this pseudolite signal. The SIC architecture is implemented on simulated and experimental near-far data sets. The results are compared with a conventional detector and improvements in acquisition and tracking performance are illustrated.  相似文献   
254.
The Mercury Dual Imaging System on the MESSENGER Spacecraft   总被引:1,自引:0,他引:1  
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips. Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated from MDIS data.  相似文献   
255.
Anticodons are trinucleotides in transfer RNA (tRNA) molecules. The latter carry amino acids for insertion into the polypeptide sequences of proteins during the translation of messenger RNA (mRNA) molecules. Messenger RNA molecules are transcribed from genes. Evolution of tRNA molecules has resulted in a set of anticodons for the 20 amino acids that are used in protein synthesis. This set of anticodons is slightly different in mitochondrial codes from the set that is used in the nuclear “universal” code. Theories for the evolution of the code include frozen accident, doublet expansion, repeating triplets and coevolutionary distribution. The number of codons has always been fixed at 64 by mathematical rules, but because an anticodon may pair with more than one codon, the number of anticodons is only 54 in the universal code, is smaller in mitochondrial codes, and was probably even smaller in archetypal primitive codes. Evidence of anticodon evolution can be seen by comparing mitochondrial codes with the universal code. Codes used by very primitive organisms that are now extinct might have specified fewer amino acids than are now used.  相似文献   
256.
The aurorae are the result of collisions with the atmosphere of energetic particles that have their origin in the solar wind, and reach the atmosphere after having undergone varying degrees of acceleration and redistribution within the Earth's magnetosphere. The global scale phenomenon represented by the aurorae therefore contains considerable information concerning the solar-terrestrial connection. For example, by correctly measuring specific auroral emissions, and with the aid of comprehensive models of the region, we can infer the total energy flux entering the atmosphere and the average energy of the particles causing these emissions. Furthermore, from these auroral emissions we can determine the ionospheric conductances that are part of the closing of the magnetospheric currents through the ionosphere, and from these we can in turn obtain the electric potentials and convective patterns that are an essential element to our understanding of the global magnetosphere-ionosphere-thermosphere-mesosphere. Simultaneously acquired images of the auroral oval and polar cap not only yield the temporal and spatial morphology from which we can infer activity indices, but in conjunction with simultaneous measurements made on spacecraft at other locations within the magnetosphere, allow us to map the various parts of the oval back to their source regions in the magnetosphere. This paper describes the Ultraviolet Imager for the Global Geospace Sciences portion of the International Solar-Terrestrial Physics program. The instrument operates in the far ultraviolet (FUV) and is capable of imaging the auroral oval regardless of whether it is sunlit or in darkness. The instrument has an 8° circular field of view and is located on a despun platform which permits simultaneous imaging of the entire oval for at least 9 hours of every 18 hour orbit. The three mirror, unobscured aperture, optical system (f/2.9) provides excellent imaging over this full field of view, yielding a per pixel angular resolution of 0.6 milliradians. Its FUV filters have been designed to allow accurate spectral separation of the features of interest, thus allowing quantitative interpretation of the images to provide the parameters mentioned above. The system has been designed to provide ten orders of magnitude blocking against longer wavelength (primarily visible) scattered sunlight, thus allowing the first imaging of key, spectrally resolved, FUV diagnostic features in the fully sunlit midday aurorae. The intensified-CCD detector has a nominal frame rate of 37 s, and the fast optical system has a noise equivalent signal within one frame of 10R. The instantaneous dynamic range is >1000 and can be positioned within an overall gain range of 104, allowing measurement of both the very weak polar cap emissions and the very bright aurora. The optical surfaces have been designed to be sufficiently smooth to permit this dynamic range to be utilized without the scattering of light from bright features into the weaker features. Finally, the data product can only be as good as the degree to which the instrument performance is characterized and calibrated. In the VUV, calibration of an an imager intended for quantitative studies is a task requiring some pioneering methods, but it is now possible to calibrate such an instrument over its focal plane to an accuracy of ±10%. In summary, very recent advances in optical, filter and detector technology have been exploited to produce an auroral imager to meet the ISTP objectives.  相似文献   
257.
Genetic engineering has often been suggested as a mechanism for improving the survival prospects of terrestrial microoganisms when seeded on Mars. The survival characteristics that these pioneer microorganisms could be endowed with and a variety of mechanisms by which this can be achieved are discussed, together with an overview of some of the potential hurdles that must be overcome. Also, a number of biologically useful properties for these microorganisms are presented that could facilitate the initial human colonisation and ultimately the planetary engineering of Mars.  相似文献   
258.
A scientific drilling expedition to the High Lake region of Nunavut, Canada, was recently completed with the goals of collecting samples and delineating gradients in salinity, gas composition, pH, pe, and microbial abundance in a 400 m thick permafrost zone and accessing the underlying pristine subpermafrost brine. With a triple-barrel wireline tool and the use of stringent quality assurance and quality control (QA/QC) protocols, 200 m of frozen, Archean, mafic volcanic rock was collected from the lower boundary that separates the permafrost layer and subpermafrost saline water. Hot water was used to remove cuttings and prevent the drill rods from freezing in place. No cryopegs were detected during penetration through the permafrost. Coring stopped at the 535 m depth, and the drill water was bailed from the hole while saline water replaced it. Within 24 hours, the borehole iced closed at 125 m depth due to vapor condensation from atmospheric moisture and, initially, warm water leaking through the casing, which blocked further access. Preliminary data suggest that the recovered cores contain viable anaerobic microorganisms that are not contaminants even though isotopic analyses of the saline borehole water suggests that it is a residue of the drilling brine used to remove the ice from the upper, older portion of the borehole. Any proposed coring mission to Mars that seeks to access subpermafrost brine will not only require borehole stability but also a means by which to generate substantial heating along the borehole string to prevent closure of the borehole from condensation of water vapor generated by drilling.  相似文献   
259.
The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated \(\mathrm{O}^{+}\) density profile from 150–450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2.  相似文献   
260.
Panning  Mark P.  Lognonné  Philippe  Bruce Banerdt  W.  Garcia  Raphaël  Golombek  Matthew  Kedar  Sharon  Knapmeyer-Endrun  Brigitte  Mocquet  Antoine  Teanby  Nick A.  Tromp  Jeroen  Weber  Renee  Beucler  Eric  Blanchette-Guertin  Jean-Francois  Bozdağ  Ebru  Drilleau  Mélanie  Gudkova  Tamara  Hempel  Stefanie  Khan  Amir  Lekić  Vedran  Murdoch  Naomi  Plesa  Ana-Catalina  Rivoldini  Atillio  Schmerr  Nicholas  Ruan  Youyi  Verhoeven  Olivier  Gao  Chao  Christensen  Ulrich  Clinton  John  Dehant  Veronique  Giardini  Domenico  Mimoun  David  Thomas Pike  W.  Smrekar  Sue  Wieczorek  Mark  Knapmeyer  Martin  Wookey  James 《Space Science Reviews》2017,211(1-4):611-650
Space Science Reviews - The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号