全文获取类型
收费全文 | 2566篇 |
免费 | 3篇 |
国内免费 | 5篇 |
专业分类
航空 | 1266篇 |
航天技术 | 1020篇 |
综合类 | 5篇 |
航天 | 283篇 |
出版年
2021年 | 15篇 |
2019年 | 16篇 |
2018年 | 44篇 |
2017年 | 37篇 |
2016年 | 26篇 |
2015年 | 15篇 |
2014年 | 50篇 |
2013年 | 64篇 |
2012年 | 52篇 |
2011年 | 88篇 |
2010年 | 63篇 |
2009年 | 107篇 |
2008年 | 150篇 |
2007年 | 65篇 |
2006年 | 49篇 |
2005年 | 62篇 |
2004年 | 73篇 |
2003年 | 91篇 |
2002年 | 46篇 |
2001年 | 106篇 |
2000年 | 46篇 |
1999年 | 88篇 |
1998年 | 88篇 |
1997年 | 63篇 |
1996年 | 63篇 |
1995年 | 92篇 |
1994年 | 97篇 |
1993年 | 37篇 |
1992年 | 59篇 |
1991年 | 23篇 |
1990年 | 28篇 |
1989年 | 57篇 |
1988年 | 20篇 |
1987年 | 35篇 |
1986年 | 21篇 |
1985年 | 78篇 |
1984年 | 44篇 |
1983年 | 50篇 |
1982年 | 65篇 |
1981年 | 81篇 |
1980年 | 28篇 |
1979年 | 24篇 |
1978年 | 23篇 |
1977年 | 18篇 |
1976年 | 15篇 |
1975年 | 19篇 |
1974年 | 13篇 |
1972年 | 17篇 |
1969年 | 13篇 |
1966年 | 8篇 |
排序方式: 共有2574条查询结果,搜索用时 0 毫秒
381.
T.P. Dachev B. Tomov Yu. Matviichuk Pl. Dimitrov N. Bankov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS. 相似文献
382.
A representative switched-capacitor DC-DC converter topology is presented, circuit operation is explained, and control strategies are identified. State-space averaging is used to analyze steady-state performance and to develop control criteria and design equations. The analytical results are verified by SPICE simulation 相似文献
383.
B. Aschenbach H. Bräuninger U. Briel W. Brinkmann H. Fink N. Heinecke H. Hippmann G. Kettenring G. Metzner A. Ondrusch E. Pfeffermann P. Predehl G. Reger K. -H. Stephan J. Trümper H. U. Zimmermann 《Space Science Reviews》1981,30(1-4):569-573
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20. 相似文献
384.
Yoshikawa M. Morinaga N. Namekawa T. 《IEEE transactions on aerospace and electronic systems》1978,(4):623-629
By the term "m-distributed optical signal" we mean a noise-like optical signal whose envelope (or intensity) fluctuation probability is modeled by Nakagami's "m-distribution." Using the m-distribution which has been widely used as an analytical model of the fading envelope in radio communications, it is shown that one can generally analyze the statistical properties such as the photoelectron count probabilities and error probabilities for the wider class of noise-like optical signals; some numerical results are also given. 相似文献
385.
C. T. Russell 《Space Science Reviews》1991,55(1-4):317-356
Although it is not unanimously accepted, many independent observations lead to the conclusion that lightning is prevalent on Venus. The electromagnetic signals detected by all 4 Venera landers are most readily explained as generation by lightning. The Venera 9 spectrometer appears to have observed a lightning storm on one occasion. The Pioneer Venus plasma wave instrument detects waves both below the electron gyrofrequency that may be due to lightning and signals above the electron gyrofrequency but at very low altitudes that may be due to the near field of the lightning. The VLF observations suggest that Venus lightning must be an intra-cloud phenomenon which is most frequent in the afternoon and evening sector. The occurrence rate is likely to be greater than on Earth. 相似文献
386.
Reeves C.R. Goldsberry T.G. Rohde D.F. 《IEEE transactions on aerospace and electronic systems》1980,(2):180-190
A beamforming technique involving cross correlation of the outputs of two directional arrays is investigated. The performance characteristics of the crossarray system are determined and related to the characteristics of the two individual arrays. It is found that the crossarray beam pattern is the average (in decibels) of the beam patterns of the individual arrays, and that the crossarray gain (rejection of spatially distributed noise) is 1.5 dB greater than the average (in decibels) of the individual array gains. The most interesting applications for this system may be those where the two arrays are quite different, as in the case of a parametric acoustic receiving array (PARRAY) and a broadside line array. 相似文献
387.
The primary objective of the Laser Interferometer Space Antenna (LISA) mission is to detect and observe gravitational waves from massive black holes and galactic binaries in the frequency range 10−4 to 10−1 Hz. This low-frequency range is inaccessible to ground-based interferometers because of the unshieldable background of local gravitational noise and because ground-based interferometers are limited in length to a few km. LISA is an ESA cornerstone mission and recently had a system study (Ref. 1) carried out by a consortium led by Astrium, which confirmed the basic configuration for the payload with only minor changes, and provided detailed concepts for the spacecraft and mission design. The study confirmed the need for a drag-free technology demonstration mission to develop the inertial sensors for LISA, before embarking on the build of the flight sensors. With a technology demonstration flight in 2005, it would be possible to carry out LISA as a joint ESA-NASA mission with a launch by 2010 subject to the funding programmatics. The baseline for LISA is three disc-like spacecraft each of which consist of a science module which carries the laser interferometer payload (two in each science module) and a propulsion module containing an ion drive and the hydrazine thrusters of the AOCS. The propulsion module is used for the transfer from earth escape trajectory provided by the Delta II launch to the operational orbit. Once there the propulsion module is jettisoned to reduce disturbances on the payload. Detailed analysis of thermal and gravitational disturbances, a model of the drag-free control and of the interferometer operation confirm that the strain sensitivity of the interferometer will be achieved. 相似文献
388.
J.T. Rudd D.M. Oliveira A. Bhaskar A.J. Halford 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):317-326
In this paper, we investigate temporal and spatial magnetosphere response to the impact of interplanetary (IP) shocks with different inclinations and speeds on the Earth’s magnetosphere. A data set with more than 500 IP shocks is used to identify positive sudden impulse (SI+) events as expressed by the SuperMAG partial ring current index. The SI+ rise time (RT), defined as the time interval between compression onset and maximum SI+ signature, is obtained for each event. We use RT and a model suggested by Takeuchi et al. (2002) to calculate the geoeffective magnetospheric distance (GMD) in the shock propagation direction as a function of shock impact angle and speed for each event. GMD is a generalization of the geoeffective magnetosphere length (GML) suggested by Takeuchi et al. (2002), defined from the subsolar point along the X line toward the tail. We estimate statistical GMD and GML values which are then reported for the first time. We also show that, similarly to well-known results for RT, the highest correlation coefficient for the GMD and impact angle is found for shocks with high speeds and small impact angles, and the faster and more frontal the shock, the smaller the GMD. This result indicates that the magnetospheric response depends heavily on shock impact angle. With these results, we argue that the prediction and forecasting of space weather events, such as those caused by coronal mass ejections, will not be accurately accomplished if the disturbances’ angles of impact are not considered as an important parameter within model and observation scheme capabilities. 相似文献
389.
Klumpar D.M. Möbius E. Kistler L.M. Popecki M. Hertzberg E. Crocker K. Granoff M. Tang Li Carlson C.W. McFadden J. Klecker B. Eberl F. Künneth E. Kästle H. Ertl M. Peterson W.K. Shelly E.G. Hovestadt D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within
spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2
+ molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor. 相似文献
390.
E. J. Smith M. Neugebauer A. Balogh S. J. Bame R. P. Lepping B. T. Tsurutani 《Space Science Reviews》1995,72(1-2):165-170
The radial component of the magnetic field at Ulysses, over latitudes from –10° to –45° and distances from 5.3 to 3.8 AU, compares very well with corresponding measurements being made by IMP-8 in the ecliptic at 1AU. There is little, if any, evidence of a latitude gradient. Variances in the field, normalized to the square of the field magnitude, show little change with latitude in variations in the magnitude but a large increase in the transverse field variations. The latter are shown to be caused by the presence of large amplitude, long period Alfvénic fluctuations. This identification is based on the close relation between the magnetic field and velocity perturbations including the effect of anisotropy in the solar wind pressure. The waves are propagating outward from the Sun, as in the ecliptic, but variance analysis indicates that the direction of propagation is radial rather than field-aligned. A significant long-period component of 10 hours is present. 相似文献