首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17647篇
  免费   31篇
  国内免费   123篇
航空   9808篇
航天技术   5208篇
综合类   236篇
航天   2549篇
  2021年   155篇
  2018年   193篇
  2016年   154篇
  2014年   434篇
  2013年   515篇
  2012年   405篇
  2011年   565篇
  2010年   394篇
  2009年   752篇
  2008年   784篇
  2007年   354篇
  2006年   420篇
  2005年   363篇
  2004年   414篇
  2003年   495篇
  2002年   463篇
  2001年   546篇
  2000年   346篇
  1999年   453篇
  1998年   408篇
  1997年   304篇
  1996年   363篇
  1995年   430篇
  1994年   401篇
  1993年   355篇
  1992年   296篇
  1991年   246篇
  1990年   233篇
  1989年   388篇
  1988年   200篇
  1987年   241篇
  1986年   228篇
  1985年   640篇
  1984年   513篇
  1983年   403篇
  1982年   485篇
  1981年   607篇
  1980年   243篇
  1979年   182篇
  1978年   189篇
  1977年   144篇
  1976年   155篇
  1975年   183篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
701.
In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system.  相似文献   
702.
NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g/cm2 in mass thickness and have predicted that shields of this mass thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the Earth's atmosphere, a very thick, i.e. high mass, shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.  相似文献   
703.
Galileo operational orbits are slightly affected by the 3 to 5 tesseral resonance, an effect that can be much more important in the case of disposal orbits. Proceeding by canonical perturbation theory we show that the part of the long-term Hamiltonian corresponding to the non-centralities of the Earth's gravitational potential can be replaced by an intermediary that shows the pendulum dynamics of the 3 to 5 tesseral resonance problem. Inclusion of lunisolar perturbations requires a semi-analytical integration, which is compared with the corresponding results from the well-established Draper Semi-analytical Satellite Theory.  相似文献   
704.
Thermal control of spacecrafts plays an important role in space missions. In the design stage the preliminary thermal analysis of the spacecraft requires an estimate of the conductive thermal resistance between the various spacecraft components. With this in mind, the fully three dimensional problem of determining the thermal field in a conducting sphere with an asymmetric split ring current carrying heating source is resolved in an analytical or almost analytical form, implying either a closed form solution or utmost expressions involving a simple numerical integration. This has immediate application for evaluation of thermal resistance in spacecrafts. Green's function integral techniques are used. Comparisons are made with series solutions and also with purely numerical solutions to contrast the simplicity and highlight the elegance of the present method. Parametric studies reveal expected behavior.  相似文献   
705.
The aim of this paper is to quantify the performance of an Electric Solar Wind Sail for accomplishing flyby missions toward one of the two orbital nodes of a near-Earth asteroid. Assuming a simplified, two-dimensional mission scenario, a preliminary mission analysis has been conducted involving the whole known population of those asteroids at the beginning of the 2013 year. The analysis of each mission scenario has been performed within an optimal framework, by calculating the minimum-time trajectory required to reach each orbital node of the target asteroid. A considerable amount of simulation data have been collected, using the spacecraft characteristic acceleration as a parameter to quantify the Electric Solar Wind Sail propulsive performance. The minimum time trajectory exhibits a different structure, which may or may not include a solar wind assist maneuver, depending both on the Sun-node distance and the value of the spacecraft characteristic acceleration. Simulations show that over 60% of near-Earth asteroids can be reached with a total mission time less than 100 days, whereas the entire population can be reached in less than 10 months with a spacecraft characteristic acceleration of 1 mm/s2.  相似文献   
706.
This paper discusses the generation, stability, and control of artificial equilibrium points for a solar balloon spacecraft in the α Centauri A and B binary star system. The continuous propulsive acceleration provided by a solar balloon is shown to be able to modify the position of the (classical) Lagrangian equilibrium points of the three-body system on a locus whose geometrical form is known analytically. A linear stability analysis reveals that the new generated equilibrium points are usually unstable, but part of them can be stabilized with a simple feedback control logic.  相似文献   
707.
In examining alternative space-development models, one observes that Heinlein postulated the first Moon flight as the outcome of the focused action of an individual – building upon an ample commercial aerospace transportation infrastructure. The same technological basis and entrepreneurial drive would then sustain a fast human and economic expansion on three new planets. Instead, historically, humans reached the Moon thanks to a “Faustian bargain” between astronautical developers and governments. This approach brought the early Apollo triumphs, but it also created the presumption of this method as the sole one for enabling space development. Eventually, the application of this paradigm caused the decline of the astronautical endeavor. Thus, just as conventional methods became unable to sustain the astronautical endeavor, space development appeared as vital, e.g., to satisfy the people?s basic needs (metabolic resources, energy, materials, and space), as shown elsewhere. Such an endeavor must grow from actions generating new wealth through commercial activities to become self-supporting. Acquisition and distribution of multiform space resources call, however, for a sound ethical environment, as predatory governments can easily forfeit those resources.  相似文献   
708.
The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman–Jouguet detonation parameters.  相似文献   
709.
Active exploration of the space leads to growth of a near-Earth space pollution. The frequency of the registered collisions of space debris with functional satellites highly increased during last 10 years. As a rule a large space debris can be observed from the Earth and catalogued, then it is possible to avoid collision with the active spacecraft. However every large debris is a potential source of a numerous small debris particles. To reduce debris population in the near Earth space the large debris should be removed from working orbits. The active debris removal technique is considered that intend to use a tethered orbital transfer vehicle, or a space tug attached by a tether to the space debris. This paper focuses on the dynamics of the space debris with flexible appendages. Mathematical model of the system is derived using the Lagrange formalism. Several numerical examples are presented to illustrate the mutual influence of the oscillations of flexible appendages and the oscillations of a tether. It is shown that flexible appendages can have a significant influence on the attitude motion of the space debris and the safety of the transportation process.  相似文献   
710.
New one-axis magnetic attitude control is proposed. Only one attitude sensor providing any inertial direction measurements is necessary, magnetometer is not used. The control may be used as a backup capability in case main actuators or some attitude sensors fail. Sun pointing is achievable using only three-axis Sun sensor, so the control may be used to lower the power consumption during battery charging. Asymptotic stability of different equilibria depending on the satellite inertia tensor is summarized. In-flight results from “Chibis-M” microsatellite are provided proving general control performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号