首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2488篇
  免费   7篇
  国内免费   6篇
航空   1224篇
航天技术   997篇
综合类   5篇
航天   275篇
  2021年   13篇
  2019年   14篇
  2018年   43篇
  2017年   34篇
  2016年   25篇
  2015年   11篇
  2014年   50篇
  2013年   62篇
  2012年   50篇
  2011年   87篇
  2010年   64篇
  2009年   105篇
  2008年   149篇
  2007年   62篇
  2006年   46篇
  2005年   62篇
  2004年   71篇
  2003年   91篇
  2002年   46篇
  2001年   101篇
  2000年   45篇
  1999年   86篇
  1998年   85篇
  1997年   62篇
  1996年   63篇
  1995年   88篇
  1994年   97篇
  1993年   37篇
  1992年   59篇
  1991年   22篇
  1990年   28篇
  1989年   56篇
  1988年   21篇
  1987年   35篇
  1986年   22篇
  1985年   74篇
  1984年   42篇
  1983年   47篇
  1982年   55篇
  1981年   77篇
  1980年   26篇
  1979年   24篇
  1978年   22篇
  1977年   18篇
  1976年   15篇
  1975年   18篇
  1974年   12篇
  1972年   17篇
  1969年   13篇
  1966年   8篇
排序方式: 共有2501条查询结果,搜索用时 15 毫秒
691.
The optimum design of an RC snubber to suppress the surge voltage across the transistor in a switching regulator with a two-winding reactor is presented. Analyzing the surge voltage by means of high-frequency equivalent circuits, we obtain the third-order characteristic equation. This third-order equation is first analyzed by the aid of the root locus method. As a result, the region where the surge voltage can be suppressed is described in the R-C plane. Then considering the snubber loss, the optimum resistance and capacitance can be obtained. Second, the precise design procedure of RC snubbers is discussed by normalization and numerical calculations. This procedure is summarized in easy-to-use nomographs.  相似文献   
692.
The theory of a new type of vibratory rate gyroscope is considered. The design considered is based upon a disc of piezoelectric material on which are deposited drive and pick-off electrodes. The equations of motion of the disc are derived and the response of the gyroscope to constant and harmonic rates of turn determined.  相似文献   
693.
Fast Maximnurm Likelihood Joint Estimation of Frequency and Frequency Rate   总被引:1,自引:0,他引:1  
A fast maximum likelihood algorithm is presented that jointly estimates the frequency and frequency rate of a sinusoid corrupted by additive Gaussian white noise. It consists of a coarse search and a fine search. First the two-dimensional frequency-frequency rate plane is subdivided into parallelograms whose size depends on the region of convergence of Newton's method used in maximizing the log-likelihood function (LLF). The size of the parallelogram is explicitly computed and is optimal for the method used. The coarse search consists of maximizing the LLF over the vertices of the parallelograms. Then starting at the vertex where the LLF attained its maximum, a two-dimensional Newton's method to find the absolute maximum of the LLF is implemented. This last step consists of the fine search. The rate of convergence of Newton's method is cubic, and is extremely fast. Furthermore Newton's method will converge after two iterations when the starting point used in the method lies within 75 percent of the distances defined by the parallelogram of convergence whose center coincides with the true values of frequency and frequency rate. In this case, the root mean square error (RMSEs) for frequency and frequency rate are practically equal to the Cramer-Rao bound at all signal-to-noise ratio (SNR)?15 dB. The frequency-frequency rate ambiguity function is shown to be even and its periodicities are extracted.  相似文献   
694.
To estimate astronaut health risk due to space radiation, one must have the ability to calculate various exposure-related quantities that are averaged over specific organs and tissue types. Such calculations require computational models of the ambient space radiation environment, particle transport, nuclear and atomic physics, and the human body. While significant efforts have been made to verify, validate, and quantify the uncertainties associated with many of these models and tools, relatively little work has focused on the uncertainties associated with the representation and utilization of the human phantoms. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various model tissues used to calculate effective dose to the reference values specified by the International Commission on Radiological Protection (ICRP). The MAX and FAX tissue masses are found to be in good agreement with the reference data, while major discrepancies are found between the CAM and CAF tissue masses and the reference data for almost all of the effective dose tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN (High charge (Z) and Energy TRaNsport) to compute mass averaged exposure quantities. A numerical algorithm is presented and used to generate multiple point distributions of varying fidelity for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. The point distributions are used to compute mass averaged dose equivalent values under both a galactic cosmic ray (GCR) and solar particle event (SPE) environment impinging isotropically on three spherical aluminum shells with areal densities of 0.4 g/cm2, 2.0 g/cm2, and 10.0 g/cm2. The dose equivalent values are examined to identify a recommended set of target points for each of the tissues and to further assess the differences between CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were significantly under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is also found that the errors associated with the mass and location of certain tissues in CAM and CAF have a significant impact on the mass averaged dose equivalent values, and it is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses.  相似文献   
695.
The downward field-aligned current region plays an active role in magnetosphere–ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. Other phenomena including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from high-altitude Cluster observations with particular emphasis on the characteristics and dynamics of quasi-static electric field structures. These, extending up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at softer boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft, indicates that the formation of electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures are typically decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The electric field coupling further depends on the current–voltage relationship, which is highly non-linear in the downward current region, and still unrevealed, as to its specific form.  相似文献   
696.
In this article, we study fast shocks at CIR boundaries during an extended interval of 15 consecutive major high speed solar wind streams in 1992–1993. Ulysses was 4–5 AU from the sun. The Abraham-Schrauner shock normal method and the Rankine-Hugoniot relations were used to determine fast shock directions and speeds. Out of 33 potential CIR shocks, 14 were determined to be fast forward shocks (FSs) and 14 were fast reverse shocks (RSs). Of the remaining 5 events, 2 were forward waves and 3 were reverse waves. CIR edges at latitudes below ∼30o were, for the most part, bounded by fast magnetosonic shocks. The forward shocks were generally quasi-perpendicular (average θnBo = 67o). The reverse shocks were more oblique (average θnBo = 52o), but they extended to all angles. Both FSs and RSs had magnetosonic Mach numbers ranging from 1 to 5 or 6. The average Mach numbers were 2.4 and 2.6 for FSs and RSs, respectively. The shock Mach numbers were noted to generally decrease with increasing latitude. The non-shock events or waves were noted to occur preferentially at high (∼−30° to −35°) heliolatitudes where stream-stream interactions were presumably weaker. These results are consistent with expectations, indicating the general accuracy of the Abraham-Schrauner technique.  相似文献   
697.
A critical need for NASA is the ability to accurately model the transport of heavy ions in the Galactic Cosmic Rays (GCR) through matter, including spacecraft walls, equipment racks, etc. Nuclear interactions are of great importance in the GCR transport problem, as they can cause fragmentation of the incoming ion into lighter ions. Since the radiation dose delivered by a particle is proportional to the square of (charge/velocity), fragmentation reduces the dose delivered by incident ions. The other mechanism by which dose can be reduced is ionization energy loss, which can lead to some particles stopping in the shielding. This is the conventional notion of shielding, but it is not applicable to human spaceflight since the particles in the GCR tend to be too energetic to be stopped in the relatively thin shielding that is possible within payload mass constraints. Our group has measured a large number of fragmentation cross sections, intended to be used as input to, or for validation of, NASA’s radiation transport models. A database containing over 200 charge-changing cross sections and over 2000 fragment production cross sections has been compiled. In this report, we examine in detail the contrast between fragment measurements at large acceptance and small acceptance. We use output from the PHITS Monte Carlo code to test our assumptions using as an example 40Ar data (and simulated data) at a beam energy of 650 MeV/nucleon. We also present preliminary analysis in which isotopic resolution was attained for beryllium fragments produced by beams of 10B and 11B. Future work on the experimental data set will focus on extracting and interpreting production cross sections for light fragments.  相似文献   
698.
The radiation environment in space is very different from the one encountered on Earth. In addition to the sparsely ionizing radiation, there are particles of different Z with energies ranging from keV up to hundreds of GeV which can cause severe damage to both electronics and humans. It is therefore important to understand the interactions of these highly ionizing particles with different materials such as the hull of space vehicles, human organs and electronics. We have used the Particle and Heavy-Ion Transport code System (PHITS), which is a three-dimensional Monte Carlo code able to calculate interactions and transport of particles and heavy ions with energies up to 100 GeV/nucleon in most matter. PHITS is developed and maintained by a collaboration between RIST (Research Organization for Information Science & Technology), JAEA (Japan Atomic Energy Agency), KEK (High Energy Accelerator Research Organization), Japan and Chalmers University of Technology, Sweden. For the purpose of examining the applicability of PHITS to the shielding design we have simulated the ESA facility Matroshka (MTR) designed and lead by the German Aerospace Center (DLR). Preliminary results are presented and discussed in this paper.  相似文献   
699.
This paper presents results from the Storm-Time Ionospheric Correction Model (STORM) validation for selected Northern and Southern Hemisphere middle latitude locations. The created database incorporated 65 strong-to-severe geomagnetic storms, which occurred within the period 1995–2007. This validation included data from some ionospheric stations (e.g., Pruhonice, El Arenosillo) that were not considered in the development or previous validations of the model. Hourly values of the F2 layer critical frequency, foF2, measured for 5–7 days during the main and recovery phases of each selected storm were compared with the predicted IRI 2007 foF2 with the STORM model option activated. To perform a detailed comparison between observed values, medians and predicted foF2 values the correlation coefficient, the root-mean-square error (RMSE), and the percentage improvement were calculated. Results of the comparative analysis show that the STORM model captures more effectively the negative phases of the summer ionospheric storms, while electron density enhancement during winter storms and the changeover of the different storm phases is reproduced with less accuracy. The STORM model corrections are less efficient for lower-middle latitudes and severe geomagnetic storms.  相似文献   
700.
Observations of strong solar wind proton flux correlations with ROSAT X-ray rates along with high spectral resolution Chandra observations of X-rays from the dark Moon show that soft X-ray emission mirrors the behavior of the solar wind. In this paper, based on an analysis of an X-ray event observed by XMM-Newton resulting from charge exchange of high charge state solar wind ions and contemporaneous neutral solar wind data, we argue that X-ray observations may be able to provide reliable advance warning, perhaps by as much as half a day, of dramatic increases in solar wind flux at Earth. Like neutral atom imaging, this provides the capability to monitor the solar wind remotely rather than in situ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号