首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5640篇
  免费   10篇
  国内免费   13篇
航空   2611篇
航天技术   2139篇
综合类   15篇
航天   898篇
  2021年   39篇
  2018年   86篇
  2017年   70篇
  2016年   58篇
  2015年   29篇
  2014年   100篇
  2013年   146篇
  2012年   126篇
  2011年   213篇
  2010年   148篇
  2009年   229篇
  2008年   291篇
  2007年   146篇
  2006年   107篇
  2005年   160篇
  2004年   165篇
  2003年   199篇
  2002年   111篇
  2001年   197篇
  2000年   99篇
  1999年   158篇
  1998年   165篇
  1997年   126篇
  1996年   120篇
  1995年   176篇
  1994年   198篇
  1993年   90篇
  1992年   119篇
  1991年   51篇
  1990年   65篇
  1989年   118篇
  1988年   47篇
  1987年   58篇
  1986年   56篇
  1985年   173篇
  1984年   142篇
  1983年   127篇
  1982年   125篇
  1981年   206篇
  1980年   55篇
  1979年   56篇
  1978年   52篇
  1977年   46篇
  1976年   41篇
  1975年   49篇
  1974年   39篇
  1973年   36篇
  1972年   58篇
  1970年   29篇
  1969年   31篇
排序方式: 共有5663条查询结果,搜索用时 0 毫秒
951.
The electric properties of pulsar’s inner annular gap are explored in this paper. Under two main assumptions, (1) the pulsar is alive, (2) the total charge of pulsar should not vary with time, the condition for the acceleration of negative particle in the annular region is derived. The acceleration condition is j ? 0.5j+, i.e., the current carried by negative particles is greater than or equal to 0.5 times of the current carried by positive particles. This condition holds even when the backward flow of positive particles exists in the annular region. It is noted that the outflow of negative particles offers good opportunities to understand the current closure problem of pulsar as well as wide radiation beam of pulsar observed at high energy band.  相似文献   
952.
Understanding transport of thermal and suprathermal particles is a fundamental issue in laboratory, solar-terrestrial, and astrophysical plasmas. For laboratory fusion experiments, confinement of particles and energy is essential for sustaining the plasma long enough to reach burning conditions. For solar wind and magnetospheric plasmas, transport properties determine the spatial and temporal distribution of energetic particles, which can be harmful for spacecraft functioning, as well as the entry of solar wind plasma into the magnetosphere. For astrophysical plasmas, transport properties determine the efficiency of particle acceleration processes and affect observable radiative signatures. In all cases, transport depends on the interaction of thermal and suprathermal particles with the electric and magnetic fluctuations in the plasma. Understanding transport therefore requires us to understand these interactions, which encompass a wide range of scales, from magnetohydrodynamic to kinetic scales, with larger scale structures also having a role. The wealth of transport studies during recent decades has shown the existence of a variety of regimes that differ from the classical quasilinear regime. In this paper we give an overview of nonclassical plasma transport regimes, discussing theoretical approaches to superdiffusive and subdiffusive transport, wave–particle interactions at microscopic kinetic scales, the influence of coherent structures and of avalanching transport, and the results of numerical simulations and experimental data analyses. Applications to laboratory plasmas and space plasmas are discussed.  相似文献   
953.
  总被引:3,自引:0,他引:3  
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air.  相似文献   
954.
Single stage Stirling coolers providing refrigeration at around 80 K have been developed for space use and are now being produced commercially. Development work is now concentrating on multistage coolers for temperatures below 30 K. This paper describes results from a two stage cooler built at the Rutherford Appleton Laboratory and preliminary tests on a closed cycle 4 K cooler.  相似文献   
955.
    
By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the large-scale quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
956.
High-energy X-rays and ??-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.  相似文献   
957.
    
  相似文献   
958.
The Electric Antennas for the STEREO/WAVES Experiment   总被引:1,自引:0,他引:1  
The STEREO/WAVES experiment is designed to measure the electric component of radio emission from interplanetary radio bursts and in situ plasma waves and fluctuations in the solar wind. Interplanetary radio bursts are generated from electron beams at interplanetary shocks and solar flares and are observed from near the Sun to 1 AU, corresponding to frequencies of approximately 16 MHz to 10 kHz. In situ plasma waves occur in a range of wavelengths larger than the Debye length in the solar wind plasma λ D ≈10 m and appear Doppler-shifted into the frequency regime down to a fraction of a Hertz. These phenomena are measured by STEREO/WAVES with a set of three orthogonal electric monopole antennas. This paper describes the electrical and mechanical design of the antenna system and discusses efforts to model the antenna pattern and response and methods for in-flight calibration.  相似文献   
959.
    
The Fluxgate Magnetometer experiments on-board the European Space Agency’s four spacecraft Cluster Mission have the capability to store sampled magnetic field vectors in the instrument memory, either as a full resolution ‘event capture’ or as spin-resolution vectors transformed into a non-spinning co-ordinate system (de-spun). The latter capability has ensured a dataset is available which extends the partial orbital coverage achieved during nominal operations in the first years of operation. The on-board de-spin is achieved using a Walsh function with Haar coefficients and allows for up to 27 h additional data per non-coverage interval. A number of commissioning orbits were used to verify the accuracy of data collected by the de-spin mode, whereby individual spacecraft were operated separately in a number of standard normal sampling and de-spin mode combinations. Up to the present time, this data has not been available to the Cluster community. We present results here comparing the performance of the on-board de-spin algorithm versus the normal sampling modes over a number of boundary layer crossings, describe the techniques used for calibration and timeline recovery, and outline the context in which the data may be usable in future studies.  相似文献   
960.
    
Erdos  Géza  Balogh  André  Kóta  József 《Space Science Reviews》2001,97(1-4):221-224
We study the solar cycle, radial, and latitudinal dependence of the characteristics of magnetic field irregularities in the Heliosphere. The frequency of magnetic field discontinuities is determined, using high time resolution magnetic field observations by Ulysses, covering the time interval from 1992 to 2000. The quasi-linear scattering mean free path of particles is also calculated. These investigations aim at understanding/exploring transport properties of energetic charged particles in the Heliosphere. We find that the travel time of solar wind plasma from the Sun to the observer is the key parameter of the process, by controling the decay of the irregularities. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号