首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2534篇
  免费   2篇
  国内免费   6篇
航空   1227篇
航天技术   1025篇
综合类   5篇
航天   285篇
  2021年   15篇
  2019年   14篇
  2018年   42篇
  2017年   34篇
  2016年   25篇
  2015年   11篇
  2014年   55篇
  2013年   63篇
  2012年   53篇
  2011年   89篇
  2010年   66篇
  2009年   107篇
  2008年   154篇
  2007年   62篇
  2006年   47篇
  2005年   63篇
  2004年   74篇
  2003年   91篇
  2002年   47篇
  2001年   101篇
  2000年   46篇
  1999年   87篇
  1998年   86篇
  1997年   62篇
  1996年   64篇
  1995年   88篇
  1994年   101篇
  1993年   37篇
  1992年   59篇
  1991年   22篇
  1990年   28篇
  1989年   57篇
  1988年   20篇
  1987年   36篇
  1986年   19篇
  1985年   78篇
  1984年   43篇
  1983年   46篇
  1982年   56篇
  1981年   80篇
  1980年   26篇
  1979年   24篇
  1978年   22篇
  1977年   18篇
  1976年   15篇
  1975年   18篇
  1974年   12篇
  1972年   17篇
  1969年   13篇
  1966年   8篇
排序方式: 共有2542条查询结果,搜索用时 156 毫秒
991.
Utilizing ACE satellite observations from 1998 to 2009, we performed the elaborate study on the properties of the clock angle θCA (arctan(By/Bz) (?90° to 90°) of the interplanetary magnetic field (IMF) in the solar wind at 1?AU. The solar wind with northward IMF (NW-IMF) and southward IMF (SW-IMF) are analyzed, independently. Statistical analysis shows that the solar wind with SW-IMF and NW-IMF has similar properties in general, including their durations, the IMF Bz and By components, and the IMF θCA. Then, the solar wind with NW-IMF (SW-IMF) is classified into five different temporal scales according to the duration of the NW-IMF (SW-IMF), i.e., very-short wind of 10–30?min, short-scale wind of 0.5–1?h, moderate-scale wind of 1–3?h, long-scale wind of 3–5?h, and super-long wind >5?h. Our analysis reveals that the IMF θCA has a distinct decrease with increase of the temporal scale of the solar wind. Next, the solar wind is classified into two groups, i.e., the high-speed solar wind (>450?km/s) and the low-speed solar wind (<450?km/s). Our analysis indicates that the IMF θCA depends highly on the solar wind speed. Statistically, high-speed solar wind tends to have larger IMF θCA than low-speed solar wind. The evolutions of the solar wind and IMF with the solar activity are further studied, revealing no clear solar variation of the IMF θCA. Finally, we analyze the monthly variation of the IMF θCA. Superposed epoch result strongly suggests the seasonal variation of the IMF θCA.  相似文献   
992.
The Dawn Mission to Vesta and Ceres   总被引:1,自引:0,他引:1  
A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed.  相似文献   
993.
ARTEMIS Science Objectives   总被引:1,自引:0,他引:1  
NASA??s two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth??s magnetotail; reconnection, particle acceleration, and turbulence in the Earth??s magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives.  相似文献   
994.
The Lunar Radar Sounder (LRS) onboard the KAGUYA (SELENE) spacecraft has successfully performed radar sounder observations of the lunar subsurface structures and passive observations of natural radio and plasma waves from the lunar orbit. After the transfer of the spacecraft into the final lunar orbit and antenna deployment, the operation of LRS started on October 29, 2007. Through the operation until June 10, 2009, 2363 hours worth of radar sounder data and 8961 hours worth of natural radio and plasma wave data have been obtained. It was revealed through radar sounder observations that there are distinct reflectors at a depth of several hundred meters in the nearside maria, which are inferred to be buried regolith layers covered by a basalt layer with a thickness of several hundred meters. Radar sounder data were obtained not only in the nearside maria but also in other regions such as the farside highland region and polar region. LRS also performed passive observations of natural plasma waves associated with interaction processes between the solar wind plasma and the moon, and the natural waves from the Earth, the sun, and Jupiter. Natural radio waves such as auroral kilometric radiation (AKR) with interference patterns caused by the lunar surface reflections, and Jovian hectometric (HOM) emissions were detected. Intense electrostatic plasma waves around 20 kHz were almost always observed at local electron plasma frequency in the solar wind, and the electron density profile, including the lunar wake boundary, was derived along the spacecraft trajectory. Broadband noises below several kHz were frequently observed in the dayside and wake boundary of the moon and it was found that a portion of them consist of bipolar pulses. The datasets obtained by LRS will make contributions for studies on the lunar geology and physical processes of natural radio and plasma wave generation and propagation.  相似文献   
995.
Magnetic turbulence is found in most space plasmas, including the Earth’s magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α?2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations.  相似文献   
996.
Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement.  相似文献   
997.
Observations of unusually large magnetic fields in the ionosphere indicate periods of maximum stress on Titan’s ionosphere and potentially of the strongest loss rates of ionospheric plasma. During Titan flyby T42, the observed magnetic field attained a maximum value of 37 nT between an altitude of 1200 and 1600 km, about 20 nT stronger than on any other Titan pass and close to five times greater in magnetic pressure. The strong fields occurred near the corotation-flow terminator rather than at the sub-flow point, suggesting that the flow which magnetized the ionosphere was from a direction far from corotation and possibly towards Saturn. Extrapolation of solar wind plasma conditions from Earth to Saturn using the University of Michigan MHD code predicts an enhanced solar wind dynamic pressure at Saturn close to this time. Cassini’s earlier exits from Saturn’s magnetosphere support this prediction because the Cassini Plasma Spectrometer instrument saw a magnetopause crossing three hours before the strong field observation. Thus it appears that Titan’s ionosphere was magnetized when the enhanced solar wind dynamic pressure compressed the Saturnian magnetosphere, and perhaps the magnetosheath magnetic field, against Titan. The solar wind pressure then decreased, leaving a strong fossil field in the ionosphere. When observed, this strong magnetic flux tube had begun to twist, further enhancing its strength.  相似文献   
998.
The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night.  相似文献   
999.
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had a successful test flight and a science flight in 2000–01 and 2002–03 and an unsuccessful launch in 2005–06 from McMurdo, Antarctica, returning 16 and 19 days of flight data. ATIC is designed to measure the spectra of cosmic rays (protons to iron). The instrument is composed of a Silicon matrix detector followed by a carbon target interleaved with scintillator tracking layers and a segmented BGO calorimeter composed of 320 individual crystals totaling 18 radiation lengths to determine the particle energy. BGO (Bismuth Germanate) is an inorganic scintillation crystal and its light output depends not only on the energy deposited by particles but also on the temperature of the crystal. The temperature of balloon instruments during flight is not constant due to sun angle variations as well as differences in albedo from the ground. The change in output for a given energy deposit in the crystals in response to temperature variations was determined.  相似文献   
1000.
On January 20, 2005 there was an X 7.1 solar flare at 0636 UT with an accompanied halo coronal mass ejection (CME). The resultant interplanetary shock impacted earth ∼36 h later. Near earth, the Advanced Composition Explorer (ACE) spacecraft observed two impulses with a staircase structure in density and pressure. The estimated earth-arrival times of these impulses were 1713 UT and 1845 UT on January 21, 2005. Three MINIature Spectrometer (MINIS) balloons were aloft on January 21st; one in the northern polar stratosphere and two in the southern polar stratosphere. MeV relativistic electron precipitation (REP) observed by all three balloons is coincident (<3 min) with the impulse arrivals and magnetospheric compression observed by both GOES 10 and 12. Balloon electric field data from the southern hemisphere show no signs of the impulse electric field directly reaching the ionosphere. Enhancement of the balloon-observed convection electric field by as much as 40 mV/m in less than 20 min during this time period is consistent with typical substorm growth. Precipitation-induced ionospheric conductivity enhancements are suggested to be (a) the result of both shock arrival and substorm activity and (b) the cause of rapid (<6 min) decreases in the observed electric field (by as much as 40 mV/m). There is poor agreement between peak cross polar cap potential in the northern hemisphere calculated from Super Dual Auroral Radar Network (SuperDARN) echoes and horizontal electric field at the MINIS balloon locations in the southern hemisphere. Possible reasons for this poor agreement include (a) a true lack of north–south conjugacy between measurement sites, (b) an invalid comparison between global (SuperDARN radar) and local (MINIS balloon) measurements and/or (c) radar absorption resulting from precipitation-induced D-region ionosphere density enhancements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号