首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2482篇
  免费   2篇
  国内免费   6篇
航空   1220篇
航天技术   992篇
综合类   5篇
航天   273篇
  2021年   13篇
  2019年   14篇
  2018年   40篇
  2017年   34篇
  2016年   25篇
  2015年   11篇
  2014年   50篇
  2013年   61篇
  2012年   50篇
  2011年   87篇
  2010年   62篇
  2009年   105篇
  2008年   149篇
  2007年   62篇
  2006年   46篇
  2005年   62篇
  2004年   71篇
  2003年   91篇
  2002年   46篇
  2001年   101篇
  2000年   45篇
  1999年   86篇
  1998年   85篇
  1997年   62篇
  1996年   63篇
  1995年   88篇
  1994年   97篇
  1993年   37篇
  1992年   59篇
  1991年   22篇
  1990年   28篇
  1989年   56篇
  1988年   20篇
  1987年   35篇
  1986年   19篇
  1985年   74篇
  1984年   42篇
  1983年   46篇
  1982年   55篇
  1981年   77篇
  1980年   26篇
  1979年   24篇
  1978年   22篇
  1977年   18篇
  1976年   15篇
  1975年   18篇
  1974年   12篇
  1972年   17篇
  1969年   13篇
  1966年   8篇
排序方式: 共有2490条查询结果,搜索用时 406 毫秒
741.
Corotating interaction regions (CIRs) in the middle heliosphere have distinct morphological features and associated patterns of turbulence and energetic particles. This report summarizes current understanding of those features and patterns, discusses how they can vary from case to case and with distance from the Sun and possible causes of those variations, presents an analytical model of the morphological features found in earlier qualitative models and numerical simulations, and identifies aspects of the features and patterns that have yet to be resolved. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
742.
Energetic particles associated with Corotating Interaction Regions (CIRs) are observed throughout the inner and middle heliosphere, showing large positive (>100%/AU) radial intensity gradients. Their appearance at 1 AU is associated with the appearance of fast, recurrent solar wind streams. At several AU, CIR energetic particles are accelerated at shocks which propagate away from the interface of fast and slow solar wind streams. CIR energy spectra at 1 AU cover the range >35 keV to several MeV/amu; the spectra steepen above ∼1 MeV/amu, and show no turnover even at the lowest energies. The ion composition of CIRs is similar to solar material, but with significant differences that might be due to properties of the seed population and/or the acceleration process. This paper summarizes properties of energetic particles in CIRs as known through the early 1990s, prior to the launch of the Ulysses, and WIND spacecraft, whose new results are presented in Kunow, Lee et al. (1999) in this volume. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
743.
This paper develops the rationale for a program of Venus exploration by man.  相似文献   
744.
Malandraki  O.E.  Sarris  E.T.  Lanzerotti  L.J.  Maclennan  C.G.  Pick  M.  Tsiropoula  G. 《Space Science Reviews》2001,97(1-4):263-268
In January 2000, the Ulysses spacecraft observed an ICME event at 43° S heliographic latitude and ∼ 4.1 AU. We use electron (E e>38 keV) observations to trace the topology of the IMF embedded within the ICME. The still controversial issue of whether ICMEs have been detached from the solar corona or are still magnetically anchored to it when they arrive at the spacecraft is tackled. An in ecliptic ICME event is also presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
745.
Lario  D.  Haggerty  D.K.  Roelof  E.C.  Tappin  S.J.  Forsyth  R.J.  Gosling  J.T. 《Space Science Reviews》2001,97(1-4):277-280
On day 49 of 1999 a strong interplanetary shock was observed by the ACE spacecraft located at 1 AU from the Sun. This shock was followed 10 hours later by a magnetic cloud (MC). A large solar energetic particle (SEP) event was observed in association with the arrival of the shock and the MC at ACE. The Ulysses spacecraft, located at 22° S heliolatitude and nearly the same ecliptic longitude as ACE, observed a large SEP event beginning on day 54 that peaked with the arrival of a solar wind and magnetic field disturbance on day 61. A magnetic cloud was observed by Ulysses on days 63–64. We suggest a scenario in which both spacecraft intercepted the same MC, although sampling different regions of it. We describe the effects that the MC produced on the streaming of energetic particles at both spacecraft. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
746.
We present and compare observations of energetic protons during the two first transits of the Ulysses spacecraft from low to high latitudes in the southern heliosphere. Protons in the energy range 1.8–3.8 MeV from the COSPIN experiment are studied for global trends and in relation to some ambient structures in the solar wind (corotating interaction region, forward/reverse shock). The global trends show the large dependence on the heliospheric condition and solar activity, including indications of a larger ambient particle population during the rising phase of solar activity and more efficient solar wind particle accelerators during the declining phase. More enhancements in the proton flux intensity are time associated with forward shocks than reverse contrary to first pass. Recurrent structures are found even during the second transit. Some latitude dependent periodicities are observed that could relate to the differential solar rotation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
747.
The maximum inclination of the heliospheric current sheet (the tilt angle) and the magnitude B of the heliospheric magnetic field are often used to characterize cosmic ray (CR) modulation. The relevance of B is likely to be the coupling of the interplanetary diffusion coefficients K to the field magnitude in a relation KB −n. In this paper we study the coupled influence of tilt angle and magnetic field variations on the modulation of cosmic rays at neutron monitor energies for the 1974 mini-cycle and for the onsets of solar cycles 21, 22, and 23. It is suggested that for A>0 polarity epochs, the sensitivity of the CR response to variations in B is partly controlled by the size of the tilt angle, α. The onsets of cycles 21 and 23 exhibit differences, related to phase differences in these parameters. A simple model is used to predict the CR response to variations in B. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
748.
Utilizing ACE satellite observations from 1998 to 2009, we performed the elaborate study on the properties of the clock angle θCA (arctan(By/Bz) (?90° to 90°) of the interplanetary magnetic field (IMF) in the solar wind at 1?AU. The solar wind with northward IMF (NW-IMF) and southward IMF (SW-IMF) are analyzed, independently. Statistical analysis shows that the solar wind with SW-IMF and NW-IMF has similar properties in general, including their durations, the IMF Bz and By components, and the IMF θCA. Then, the solar wind with NW-IMF (SW-IMF) is classified into five different temporal scales according to the duration of the NW-IMF (SW-IMF), i.e., very-short wind of 10–30?min, short-scale wind of 0.5–1?h, moderate-scale wind of 1–3?h, long-scale wind of 3–5?h, and super-long wind >5?h. Our analysis reveals that the IMF θCA has a distinct decrease with increase of the temporal scale of the solar wind. Next, the solar wind is classified into two groups, i.e., the high-speed solar wind (>450?km/s) and the low-speed solar wind (<450?km/s). Our analysis indicates that the IMF θCA depends highly on the solar wind speed. Statistically, high-speed solar wind tends to have larger IMF θCA than low-speed solar wind. The evolutions of the solar wind and IMF with the solar activity are further studied, revealing no clear solar variation of the IMF θCA. Finally, we analyze the monthly variation of the IMF θCA. Superposed epoch result strongly suggests the seasonal variation of the IMF θCA.  相似文献   
749.
The Dawn Mission to Vesta and Ceres   总被引:1,自引:0,他引:1  
A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed.  相似文献   
750.
ARTEMIS Science Objectives   总被引:1,自引:0,他引:1  
NASA??s two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth??s magnetotail; reconnection, particle acceleration, and turbulence in the Earth??s magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号