首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2481篇
  免费   2篇
  国内免费   6篇
航空   1220篇
航天技术   991篇
综合类   5篇
航天   273篇
  2021年   13篇
  2019年   14篇
  2018年   40篇
  2017年   34篇
  2016年   25篇
  2015年   11篇
  2014年   50篇
  2013年   60篇
  2012年   50篇
  2011年   87篇
  2010年   62篇
  2009年   105篇
  2008年   149篇
  2007年   62篇
  2006年   46篇
  2005年   62篇
  2004年   71篇
  2003年   91篇
  2002年   46篇
  2001年   101篇
  2000年   45篇
  1999年   86篇
  1998年   85篇
  1997年   62篇
  1996年   63篇
  1995年   88篇
  1994年   97篇
  1993年   37篇
  1992年   59篇
  1991年   22篇
  1990年   28篇
  1989年   56篇
  1988年   20篇
  1987年   35篇
  1986年   19篇
  1985年   74篇
  1984年   42篇
  1983年   46篇
  1982年   55篇
  1981年   77篇
  1980年   26篇
  1979年   24篇
  1978年   22篇
  1977年   18篇
  1976年   15篇
  1975年   18篇
  1974年   12篇
  1972年   17篇
  1969年   13篇
  1966年   8篇
排序方式: 共有2489条查询结果,搜索用时 31 毫秒
971.
Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement.  相似文献   
972.
Observations of unusually large magnetic fields in the ionosphere indicate periods of maximum stress on Titan’s ionosphere and potentially of the strongest loss rates of ionospheric plasma. During Titan flyby T42, the observed magnetic field attained a maximum value of 37 nT between an altitude of 1200 and 1600 km, about 20 nT stronger than on any other Titan pass and close to five times greater in magnetic pressure. The strong fields occurred near the corotation-flow terminator rather than at the sub-flow point, suggesting that the flow which magnetized the ionosphere was from a direction far from corotation and possibly towards Saturn. Extrapolation of solar wind plasma conditions from Earth to Saturn using the University of Michigan MHD code predicts an enhanced solar wind dynamic pressure at Saturn close to this time. Cassini’s earlier exits from Saturn’s magnetosphere support this prediction because the Cassini Plasma Spectrometer instrument saw a magnetopause crossing three hours before the strong field observation. Thus it appears that Titan’s ionosphere was magnetized when the enhanced solar wind dynamic pressure compressed the Saturnian magnetosphere, and perhaps the magnetosheath magnetic field, against Titan. The solar wind pressure then decreased, leaving a strong fossil field in the ionosphere. When observed, this strong magnetic flux tube had begun to twist, further enhancing its strength.  相似文献   
973.
The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night.  相似文献   
974.
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had a successful test flight and a science flight in 2000–01 and 2002–03 and an unsuccessful launch in 2005–06 from McMurdo, Antarctica, returning 16 and 19 days of flight data. ATIC is designed to measure the spectra of cosmic rays (protons to iron). The instrument is composed of a Silicon matrix detector followed by a carbon target interleaved with scintillator tracking layers and a segmented BGO calorimeter composed of 320 individual crystals totaling 18 radiation lengths to determine the particle energy. BGO (Bismuth Germanate) is an inorganic scintillation crystal and its light output depends not only on the energy deposited by particles but also on the temperature of the crystal. The temperature of balloon instruments during flight is not constant due to sun angle variations as well as differences in albedo from the ground. The change in output for a given energy deposit in the crystals in response to temperature variations was determined.  相似文献   
975.
On January 20, 2005 there was an X 7.1 solar flare at 0636 UT with an accompanied halo coronal mass ejection (CME). The resultant interplanetary shock impacted earth ∼36 h later. Near earth, the Advanced Composition Explorer (ACE) spacecraft observed two impulses with a staircase structure in density and pressure. The estimated earth-arrival times of these impulses were 1713 UT and 1845 UT on January 21, 2005. Three MINIature Spectrometer (MINIS) balloons were aloft on January 21st; one in the northern polar stratosphere and two in the southern polar stratosphere. MeV relativistic electron precipitation (REP) observed by all three balloons is coincident (<3 min) with the impulse arrivals and magnetospheric compression observed by both GOES 10 and 12. Balloon electric field data from the southern hemisphere show no signs of the impulse electric field directly reaching the ionosphere. Enhancement of the balloon-observed convection electric field by as much as 40 mV/m in less than 20 min during this time period is consistent with typical substorm growth. Precipitation-induced ionospheric conductivity enhancements are suggested to be (a) the result of both shock arrival and substorm activity and (b) the cause of rapid (<6 min) decreases in the observed electric field (by as much as 40 mV/m). There is poor agreement between peak cross polar cap potential in the northern hemisphere calculated from Super Dual Auroral Radar Network (SuperDARN) echoes and horizontal electric field at the MINIS balloon locations in the southern hemisphere. Possible reasons for this poor agreement include (a) a true lack of north–south conjugacy between measurement sites, (b) an invalid comparison between global (SuperDARN radar) and local (MINIS balloon) measurements and/or (c) radar absorption resulting from precipitation-induced D-region ionosphere density enhancements.  相似文献   
976.
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 1011 to 1014 eV during Long Duration Balloon (LDB) flights from McMurdo, Antarctica. Currently, analysis from the ATIC-1 test flight and ATIC-2 science flight is underway and preparation for a second science flight is in progress. Charge identification of the incident cosmic ray is accomplished, primarily, by a pixilated Silicon Matrix detector located at the very top of the instrument. While it has been shown that the Silicon Matrix detector provides good charge identification even in the presence of electromagnetic shower backscatter from the calorimeter, the detector only measures the charge once. In this paper, we examine use of the top scintillator hodoscope detector to provide a second measure of the cosmic ray charge and, thus, improve the ATIC charge identification.  相似文献   
977.
The Cosmic-Ray Energetics And Mass balloon-borne experiment has been launched twice in Antarctica, first in December 2004 and again in December 2005. It circumnavigated the South Pole three times during the first flight, which set a flight duration record of 42 days. A cumulative duration of 70 days within 13 months was achieved when the second flight completed 28 days during two circumnavigations of the Pole on 13 January 2006. Both the science instrument and support systems functioned extremely well, and a total 117 GB of data including 67 million science events were collected during these two flights. Preliminary analysis indicates that the data extend well above 100 TeV and follow reasonable power laws. The payload recovered from the first flight has been refurbished for the third flight in 2007, whereas the payload from the second flight is being refurbished to be ready for the fourth flight in 2008. Each flight will extend the reach of precise cosmic-ray composition measurements to energies not previously possible.  相似文献   
978.
Gamma-ray spectrometer (GRS) is included in the payload of Chinese first lunar mission Chang’E-1 that will be launched in 2007. Specific objectives of the GRS are to map abundance of O, Si, Fe, Ti, U, Th, K, and perhaps, Mg, Al, and Ca to depths of about 20 cm. There are remarkable advantages for GRS application to remote sensing elemental materials over the entire lunar surface: large effective area and good ability for background rejection. We will describe the design of GRS and present its performance in this paper. Moreover, the GRS calibration will also be introduced.  相似文献   
979.
The finite element algorithm developed by the authors has been used for solving the strength and stability problems of shells. The effect of deformation nonlinearity, stiffness of stringer set, shell thickness on critical loads has been determined.  相似文献   
980.
This paper examines the impact of the external field intensity of white noise on the nonlinear dynamics of square plates under the longitudinal load. It is shown that in some cases, the noise of high intensity is able to reduce the number of frequencies in the oscillation spectrum of the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号