全文获取类型
收费全文 | 2514篇 |
免费 | 5篇 |
国内免费 | 5篇 |
专业分类
航空 | 1238篇 |
航天技术 | 1004篇 |
综合类 | 5篇 |
航天 | 277篇 |
出版年
2021年 | 14篇 |
2019年 | 14篇 |
2018年 | 42篇 |
2017年 | 34篇 |
2016年 | 26篇 |
2015年 | 11篇 |
2014年 | 52篇 |
2013年 | 62篇 |
2012年 | 50篇 |
2011年 | 88篇 |
2010年 | 65篇 |
2009年 | 106篇 |
2008年 | 152篇 |
2007年 | 64篇 |
2006年 | 51篇 |
2005年 | 62篇 |
2004年 | 71篇 |
2003年 | 92篇 |
2002年 | 46篇 |
2001年 | 102篇 |
2000年 | 45篇 |
1999年 | 87篇 |
1998年 | 85篇 |
1997年 | 62篇 |
1996年 | 63篇 |
1995年 | 88篇 |
1994年 | 97篇 |
1993年 | 37篇 |
1992年 | 59篇 |
1991年 | 22篇 |
1990年 | 28篇 |
1989年 | 60篇 |
1988年 | 20篇 |
1987年 | 35篇 |
1986年 | 21篇 |
1985年 | 74篇 |
1984年 | 42篇 |
1983年 | 47篇 |
1982年 | 55篇 |
1981年 | 77篇 |
1980年 | 26篇 |
1979年 | 24篇 |
1978年 | 22篇 |
1977年 | 18篇 |
1976年 | 15篇 |
1975年 | 18篇 |
1974年 | 12篇 |
1972年 | 17篇 |
1969年 | 13篇 |
1966年 | 8篇 |
排序方式: 共有2524条查询结果,搜索用时 0 毫秒
481.
P. Brown M.W. Dunlop A. Balogh C. Carr J. Gloag E. Lucek T. Oddy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1571-1578
The Fluxgate Magnetometer experiments on-board the European Space Agency’s four spacecraft Cluster Mission have the capability to store sampled magnetic field vectors in the instrument memory, either as a full resolution ‘event capture’ or as spin-resolution vectors transformed into a non-spinning co-ordinate system (de-spun). The latter capability has ensured a dataset is available which extends the partial orbital coverage achieved during nominal operations in the first years of operation. The on-board de-spin is achieved using a Walsh function with Haar coefficients and allows for up to 27 h additional data per non-coverage interval. A number of commissioning orbits were used to verify the accuracy of data collected by the de-spin mode, whereby individual spacecraft were operated separately in a number of standard normal sampling and de-spin mode combinations. Up to the present time, this data has not been available to the Cluster community. We present results here comparing the performance of the on-board de-spin algorithm versus the normal sampling modes over a number of boundary layer crossings, describe the techniques used for calibration and timeline recovery, and outline the context in which the data may be usable in future studies. 相似文献
482.
Ergun R.E. Carlson C.W. Mozer F.S. Delory G.T. Temerin M. McFadden J.P. Pankow D. Abiad R. Harvey P. Wilkes R. Primbsch H. Elphic R. Strangeway R. Pfaff R. Cattell C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations. 相似文献
483.
484.
H. Sakurai Y. Shouji M. Osaki T. Aoki T. Gandou W. Kato Y. Takahashi S. Gunji F. Tokanai 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2492-2496
Daily Be-7 concentrations in air at the height of 15 m are continuously observed at 38°15.2′N, 140°20.9′E, between 2000 and 2001. The average concentration and the relative standard deviation were 4.0 mBq/m3 and 50% in 2000–2001, respectively. The Be-7 concentrations increased 2.5% with the decrease in the sunspot numbers by 6.7% for the term of two years. From the power spectral analysis, the periodicity of 26 days is shown for the daily Be-7 concentrations. The folding analysis indicates that the time variation of the Be-7 concentration is similar to that of the ground-based neutron counting rate, and the phase delay for the minimum portion of Be-7 concentration was roughly 8 days to the maximum sunspot number. These results indicate that the Be-7 concentrations in the air at ground level have 26 day periodicity as a component of time variations and the time variation is caused by the solar modulation of galactic cosmic rays, which corresponds to the variation of the sunspot number due to the rotation of the sun. 相似文献
485.
Single stage Stirling coolers providing refrigeration at around 80 K have been developed for space use and are now being produced commercially. Development work is now concentrating on multistage coolers for temperatures below 30 K. This paper describes results from a two stage cooler built at the Rutherford Appleton Laboratory and preliminary tests on a closed cycle 4 K cooler. 相似文献
486.
Deborah L. Domingue Clark R. Chapman Rosemary M. Killen Thomas H. Zurbuchen Jason A. Gilbert Menelaos Sarantos Mehdi Benna James A. Slavin David Schriver Pavel M. Trávníček Thomas M. Orlando Ann L. Sprague David T. Blewett Jeffrey J. Gillis-Davis William C. Feldman David J. Lawrence George C. Ho Denton S. Ebel Larry R. Nittler Faith Vilas Carle M. Pieters Sean C. Solomon Catherine L. Johnson Reka M. Winslow Jörn Helbert Patrick N. Peplowski Shoshana Z. Weider Nelly Mouawad Noam R. Izenberg William E. McClintock 《Space Science Reviews》2014,181(1-4):121-214
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition. 相似文献
487.
Y Kitaya M Kawai J Tsuruyama H Takahashi A Tani E Goto T Saito M Kiyota 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):659-664
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air. 相似文献
488.
The Electric Antennas for the STEREO/WAVES Experiment 总被引:1,自引:0,他引:1
S. D. Bale R. Ullrich K. Goetz N. Alster B. Cecconi M. Dekkali N. R. Lingner W. Macher R. E. Manning J. McCauley S. J. Monson T. H. Oswald M. Pulupa 《Space Science Reviews》2008,136(1-4):529-547
The STEREO/WAVES experiment is designed to measure the electric component of radio emission from interplanetary radio bursts and in situ plasma waves and fluctuations in the solar wind. Interplanetary radio bursts are generated from electron beams at interplanetary shocks and solar flares and are observed from near the Sun to 1 AU, corresponding to frequencies of approximately 16 MHz to 10 kHz. In situ plasma waves occur in a range of wavelengths larger than the Debye length in the solar wind plasma λ D ≈10 m and appear Doppler-shifted into the frequency regime down to a fraction of a Hertz. These phenomena are measured by STEREO/WAVES with a set of three orthogonal electric monopole antennas. This paper describes the electrical and mechanical design of the antenna system and discusses efforts to model the antenna pattern and response and methods for in-flight calibration. 相似文献
489.
Two energetic events in the Earth’s magnetotail detected by Geotail are examined with detailed analysis of three-dimensional
velocity phase space density. It is found that the occurrence of multiple ion components is high during these dynamic episodes.
Different populations evolve independently of each other, suggesting particles from multiple activity sites contributing to
the observed phase space density. The transport properties with consideration of multiple components are evaluated, with the
result showing significant differences from those based on a single fluid approach. This comparison indicates that precise
evaluation of the energy and magnetic flux transport of energetic events in the magnetotail requires resolving individual
populations in the phase space density. 相似文献
490.
T.K. Yeoman H.C. Scoffield D.M. Wright L.J. Baddeley A.N. Vasilyev N.V. Semenova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
A brief review is provided of recent progress in understanding the ionospheric Alfvén resonator (IAR) at high latitude. Firstly, naturally occurring resonances of the IAR as detected by pulsation magnetometers in the auroral zone at Sodankylä and in the polar cap at Barentsburg are considered. The characteristics of the IAR in the two regions are broadly similar, although the effects of solar illumination are less clear at the higher latitudes. Secondly we review recent attempts to stimulate the IAR through high-power radio frequency experiments both in the auroral zone at Tromsø with the European Incoherent SCATter (EISCAT) heater, and within the polar cap at Longyearbyen with the Space Plasma Exploration by Active Radar (SPEAR) facility. In the auroral zone at, Tromsø the stimulated IAR has been observed by ground-based magnetometers, and through electron acceleration observed on the FAST spacecraft. At SPEAR in the polar cap, the stimulated IAR has been investigated, with ground magnetometers, with the first results indicative of a positive detection. 相似文献