全文获取类型
收费全文 | 2484篇 |
免费 | 7篇 |
国内免费 | 6篇 |
专业分类
航空 | 1221篇 |
航天技术 | 998篇 |
综合类 | 5篇 |
航天 | 273篇 |
出版年
2021年 | 13篇 |
2019年 | 14篇 |
2018年 | 41篇 |
2017年 | 34篇 |
2016年 | 25篇 |
2015年 | 11篇 |
2014年 | 50篇 |
2013年 | 62篇 |
2012年 | 50篇 |
2011年 | 87篇 |
2010年 | 63篇 |
2009年 | 105篇 |
2008年 | 150篇 |
2007年 | 62篇 |
2006年 | 46篇 |
2005年 | 62篇 |
2004年 | 71篇 |
2003年 | 91篇 |
2002年 | 46篇 |
2001年 | 101篇 |
2000年 | 45篇 |
1999年 | 86篇 |
1998年 | 85篇 |
1997年 | 62篇 |
1996年 | 63篇 |
1995年 | 88篇 |
1994年 | 97篇 |
1993年 | 37篇 |
1992年 | 59篇 |
1991年 | 22篇 |
1990年 | 28篇 |
1989年 | 56篇 |
1988年 | 20篇 |
1987年 | 35篇 |
1986年 | 21篇 |
1985年 | 74篇 |
1984年 | 42篇 |
1983年 | 47篇 |
1982年 | 55篇 |
1981年 | 77篇 |
1980年 | 26篇 |
1979年 | 24篇 |
1978年 | 22篇 |
1977年 | 18篇 |
1976年 | 15篇 |
1975年 | 18篇 |
1974年 | 12篇 |
1972年 | 17篇 |
1969年 | 13篇 |
1966年 | 8篇 |
排序方式: 共有2497条查询结果,搜索用时 15 毫秒
931.
Liquid encapsulation crystal growth from the melt plays an important role in space processing. Use of an encapsulant may avoid evaporation of volatile components and may control thermocapillary flow, which becomes important in microgravity. In the present work the fluid physics of encapsulated liquid gallium is studied analytically and numerically in preparation to forthcoming experiments. It is shown that flow in the viscous encapsulant is essentially negligible and that liquid encapsulation reduces flow velocities in the encapsulated electronic melt. Flow velocity in the gallium is the main parameter in the studies. 相似文献
932.
D. Kucharski T. Otsubo G. Kirchner F. Koidl 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The Graz 2 kHz Satellite Laser Ranging (SLR) measurements allow determination of the spin axis orientation of the geodetic satellite Ajisai. The high repetition rate of the laser makes it possible to determine the epoch time when the laser is pointing directly between two corner cube reflector (CCR) rings of the satellite. Identification of many such events during a few (up to 3) consecutive passes allows to state the satellite orientation in the celestial coordinate system. Six years of 2 kHz SLR data (October 2003–October 2009) delivered 331 orientation values which clearly show precession of the axis along a cone centered at 14h56m2.8s in right ascension and 88.512° in declination (J2000.0 celestial reference frame) and with an half-aperture angle θ of 1.405°. The spin axis precesses with a period of 117 days, which is equal to the period of the right ascension of the ascending node of Ajisai’s orbit. We present a model of the axis precession which allows prediction of the satellite orientation – necessary for the envisaged laser time transfer via Ajisai mirrors. 相似文献
933.
Sinha A. Kirubarajan T. Bar-Shalom Y. 《IEEE transactions on aerospace and electronic systems》2002,38(1):183-203
In a scenario of closely spaced targets special attention has to be paid to radar signal processing. We present an advanced processing technique, which uses the maximum likelihood (ML) criterion to extract from a monopulse radar separate angle measurements for unresolved targets. This processing results in a significant improvement, in terms of measurement error standard deviations, over angle estimators using the monopulse ratio. Algorithms are developed for Swerling I as well as Swerling III models of radar cross section (RCS) fluctuations. The accuracy of the results is compared with the Cramer Rao lower bound (CRLB) and also to the monopulse ratio technique. A novel technique to detect the presence of two unresolved targets is also discussed. The performance of the ML estimator was evaluated in a benchmark scenario of closely spaced targets - closer than half power beamwidth of a monopulse radar. The interacting multiple model probabilistic data association (IMMPDA) track estimator was used in conjunction with the ML angle extractor 相似文献
934.
Cosmic Research - On January 21, 1972, the Mars 3 satellite recorded a strong (~27 nT) regular magnetic field in the region of the spacecraft’s closest approach to the dayside of Mars. Many... 相似文献
935.
W. R. Binns M. E. Wiedenbeck M. Arnould A. C. Cummings G. A. de Nolfo S. Goriely M. H. Israel R. A. Leske R. A. Mewaldt G. Meynet L. M. Scott E. C. Stone T. T. von Rosenvinge 《Space Science Reviews》2007,130(1-4):439-449
We have measured the isotopic abundances of neon and a number of other species in the galactic cosmic rays (GCRs) using the
Cosmic Ray Isotope Spectrometer (CRIS) aboard the ACE spacecraft. Our data are compared to recent results from two-component
(Wolf–Rayet material plus solar-like mixtures) Wolf–Rayet (WR) models. The three largest deviations of galactic cosmic ray
isotope ratios from solar-system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are very close to those observed. All of the isotopic ratios that we have measured are consistent with a GCR source consisting
of ∼20% of WR material mixed with ∼80% material with solar-system composition. Since WR stars are evolutionary products of
OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of our data with WR models
suggests that OB associations within superbubbles are the likely source of at least a substantial fraction of GCRs. In previous
work it has been shown that the primary 59Ni (which decays only by electron-capture) in GCRs has decayed, indicating a time interval between nucleosynthesis and acceleration
of >105 y. It has been suggested that in the OB association environment, ejecta from supernovae might be accelerated by the high
velocity WR winds on a time scale that is short compared to the half-life of 59Ni. Thus the 59Ni might not have time to decay and this would cast doubt upon the OB association origin of cosmic rays. In this paper we
suggest a scenario that should allow much of the 59Ni to decay in the OB association environment and conclude that the hypothesis of the OB association origin of cosmic rays
appears to be viable. 相似文献
936.
J. H. Waite Jr. W. S. Lewis W. T. Kasprzak V. G. Anicich B. P. Block T. E. Cravens G. G. Fletcher W.-H. Ip J. G. Luhmann R. L. Mcnutt H. B. Niemann J. K. Parejko J. E. Richards R. L. Thorpe E. M. Walter R. V. Yelle 《Space Science Reviews》2004,114(1-4):113-231
The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation will determine the mass composition and number densities of neutral species and low-energy ions in key regions of the Saturn system. The primary focus of the INMS investigation is on the composition and structure of Titan’s upper atmosphere and its interaction with Saturn’s magnetospheric plasma. Of particular interest is the high-altitude region, between 900 and 1000 km, where the methane and nitrogen photochemistry is initiated that leads to the creation of complex hydrocarbons and nitriles that may eventually precipitate onto the moon’s surface to form hydrocarbon–nitrile lakes or oceans. The investigation is also focused on the neutral and plasma environments of Saturn’s ring system and icy moons and on the identification of positive ions and neutral species in Saturn’s inner magnetosphere. Measurement of material sputtered from the satellites and the rings by magnetospheric charged particle and micrometeorite bombardment is expected to provide information about the formation of the giant neutral cloud of water molecules and water products that surrounds Saturn out to a distance of ∼12 planetary radii and about the genesis and evolution of the rings.The INMS instrument consists of a closed ion source and an open ion source, various focusing lenses, an electrostatic quadrupole switching lens, a radio frequency quadrupole mass analyzer, two secondary electron multiplier detectors, and the associated supporting electronics and power supply systems. The INMS will be operated in three different modes: a closed source neutral mode, for the measurement of non-reactive neutrals such as N2 and CH4; an open source neutral mode, for reactive neutrals such as atomic nitrogen; and an open source ion mode, for positive ions with energies less than 100 eV. Instrument sensitivity is greatest in the first mode, because the ram pressure of the inflowing gas can be used to enhance the density of the sampled non-reactive neutrals in the closed source antechamber. In this mode, neutral species with concentrations on the order of ≥104 cm−3 will be detected (compared with ≥105 cm−3 in the open source neutral mode). For ions the detection threshold is on the order of 10−2 cm−3 at Titan relative velocity (6 km sec−1). The INMS instrument has a mass range of 1–99 Daltons and a mass resolutionM/ΔM of 100 at 10% of the mass peak height, which will allow detection of heavier hydrocarbon species and of possible cyclic hydrocarbons such as C6H6.The INMS instrument was built by a team of engineers and scientists working at NASA’s Goddard Space Flight Center (Planetary Atmospheres Laboratory) and the University of Michigan (Space Physics Research Laboratory). INMS development and fabrication were directed by Dr. Hasso B. Niemann (Goddard Space Flight Center). The instrument is operated by a Science Team, which is also responsible for data analysis and distribution. The INMS Science Team is led by Dr. J. Hunter Waite, Jr. (University of Michigan).This revised version was published online in July 2005 with a corrected cover date. 相似文献
937.
J. Baláž V. A. Gladyshev K. Kudela A. A. Petrukovich E. Sarris T. Sarris M. Slivka Ya. Strhárský 《Cosmic Research》2013,51(2):90-95
The energetic particle experiment MEP-2 onboard the Spectr-R high apogee satellite is briefly described. The instrument measures fluxes and spectra of electrons (30 keV–350 keV) and ions (30 keV–3.2MeV), using two pairs of silicon detectors. The example of first observations upstream from the bow shock illustrates its successful operation in space. Unique observations of ~30 s strong fluctuations of energetic ions with energies up to two hundred keV are discussed. 相似文献
938.
Y. Saito D. Akita H. Fuke I. Iijima N. Izutsu Y. Kato J. Kawada Y. Matsuzaka E. Mizuta M. Namiki N. Nonaka S. Ohta T. Sato M. Seo A. Takada K. Tamura M. Toriumi T. Yamagami K. Yamada T. Yoshida K. Matsushima S. Tanaka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement. 相似文献
939.
S.S. Nikte A.K. Sharma D.P. Nade M.V. Rokade R.N. Ghodpage P.T. Patil R.V. Bhonsle 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
A dual dipole antenna has been installed at low latitude station Kolhapur (Geographic 16.8°N, 74.25°E), Maharashtra, India for the study of cosmic radio noise absorption using Solid State Riometer (which operates at 30 MHz) during pre phase of 24th solar maxima. The aim for this type of study over Kolhapur was to know the response of lower (D region) ionosphere over low latitude by cosmic radio noise absorption using riometer technique during quite period as well as sudden ionospheric disturbances (SID). The observations are being taken for 3 years. Two different sites (∼40 km away from each other) were used for the installation of riometer equipment assuming minimum local noise. It is found that solar noise to cosmic radio noise hence resulting in signal saturation. The night time signal is relatively free of interference but sometimes local noise is responsible for spike-like signatures. Hence it is concluded that Kolhapur (a low latitude station) is not suitable for the study of cosmic radio noise absorption on 30 MHz with riometer and dual dipole antenna. Proper choice for operating frequency of riometer and antenna gain is suggested for low latitude use of this technique for ionospheric deviative and nondeviative absorption studies. 相似文献
940.
M. Abada-Simon A. Lecacheux T. S. Bastian J. A. Bookbinder G. A. Dulk 《Space Science Reviews》1994,68(1-4):291-292
We report the first millimetric detections of the magnetic cataclysmic variable AE Aquarii, accompanied by contemporaneous microwave observations. These data show that the time-averaged spectrum is well fit by a power-law which extends to mm wavelengths. We suggest that the spectrum is consistent with that expected from a superposition of flare-like events. 相似文献